A055898 Triangle: Number of directed site animals on a square lattice with n+1 total sites and k sites supported in one particular way.
1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 16, 7, 1, 1, 15, 39, 31, 9, 1, 1, 21, 81, 101, 51, 11, 1, 1, 28, 150, 272, 209, 76, 13, 1, 1, 36, 256, 636, 696, 376, 106, 15, 1, 1, 45, 410, 1340, 1980, 1496, 615, 141, 17, 1, 1, 55, 625, 2600, 5000, 5032, 2850, 939, 181, 19, 1, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 6, 5, 1; 1,10,16, 7, 1; ...
Links
- A. J. Guttmann, Indicators of solvability for lattice models, Discrete Math., 217 (2000), 167-189 (A_sq of Section 6).
- M. Bousquet-Mélou, New enumerative results on two-dimensional directed animals
- M. Bousquet-Mélou, New enumerative results on two-dimensional directed animals, Discr. Math., 180 (1998), 73-106.
Crossrefs
Programs
-
Mathematica
nmax = 10; A[x_, y_] = (1/2) x ((1 - (4 x/((1 + x) (1 + x - x y))))^(-1/2) - 1); g = A[x, y] + O[x]^(nmax+3); row[n_] := CoefficientList[Coefficient[g, x, n+2], y]; Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Jul 24 2018 *)
-
Maxima
T(n,m):=sum(binomial(n-k,m)*sum(binomial(n-m-k,i)*(-1)^(n+m-i)*binomial(k+i,k)*binomial(2*i+1,i+1),i,0,n-m-k),k,0,n); /* Vladimir Kruchinin, Jan 26 2022 */
Formula
G.f.: A(x, y)=(1/2x)((1-(4x/((1+x)(1+x-xy))))^(-1/2) - 1).
T(n,m) = Sum_{k=0..n} C(n-k,m)*Sum_{i=0..n-m-k} (-1)^(n+m-i) *C(n-m-k,i) *C(k+i,k) *C(2*i+1,i+1). - Vladimir Kruchinin, Jan 26 2022