cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055898 Triangle: Number of directed site animals on a square lattice with n+1 total sites and k sites supported in one particular way.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 16, 7, 1, 1, 15, 39, 31, 9, 1, 1, 21, 81, 101, 51, 11, 1, 1, 28, 150, 272, 209, 76, 13, 1, 1, 36, 256, 636, 696, 376, 106, 15, 1, 1, 45, 410, 1340, 1980, 1496, 615, 141, 17, 1, 1, 55, 625, 2600, 5000, 5032, 2850, 939, 181, 19, 1, 1
Offset: 0

Views

Author

Christian G. Bower, Jun 13 2000

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 3, 1;
  1, 6, 5, 1;
  1,10,16, 7, 1;
  ...
		

Crossrefs

Row sums give A005773. Columns 0-8: A000012, A000217, A011863(n-1), A055899-A055904. Cf. A055905, A055907.

Programs

  • Mathematica
    nmax = 10;
    A[x_, y_] = (1/2) x ((1 - (4 x/((1 + x) (1 + x - x y))))^(-1/2) - 1);
    g = A[x, y] + O[x]^(nmax+3);
    row[n_] := CoefficientList[Coefficient[g, x, n+2], y];
    Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Jul 24 2018 *)
  • Maxima
    T(n,m):=sum(binomial(n-k,m)*sum(binomial(n-m-k,i)*(-1)^(n+m-i)*binomial(k+i,k)*binomial(2*i+1,i+1),i,0,n-m-k),k,0,n); /* Vladimir Kruchinin, Jan 26 2022 */

Formula

G.f.: A(x, y)=(1/2x)((1-(4x/((1+x)(1+x-xy))))^(-1/2) - 1).
T(n,m) = Sum_{k=0..n} C(n-k,m)*Sum_{i=0..n-m-k} (-1)^(n+m-i) *C(n-m-k,i) *C(k+i,k) *C(2*i+1,i+1). - Vladimir Kruchinin, Jan 26 2022