cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056019 Self-inverse infinite permutation which shows the position of each finite permutation's inverse permutation in A055089.

Original entry on oeis.org

0, 1, 2, 4, 3, 5, 6, 7, 12, 18, 13, 19, 8, 10, 14, 20, 16, 22, 9, 11, 15, 21, 17, 23, 24, 25, 26, 28, 27, 29, 48, 49, 72, 96, 73, 97, 50, 52, 74, 98, 76, 100, 51, 53, 75, 99, 77, 101, 30, 31, 36, 42, 37, 43, 54, 55, 78, 102, 79, 103, 60, 66, 84, 108, 90, 114, 61, 67, 85
Offset: 0

Views

Author

Antti Karttunen, Jun 08 2000

Keywords

Comments

PermRevLexRank and PermRevLexUnrank have been modified from the algorithms PermLexRank and PermLexUnrank presented in the book "Combinatorial Algorithms, Generation, Enumeration and Search", by Donald L. Kreher and Douglas R. Stinson.

Examples

			E.g. the permutation [2,3,1] is the 4th permutation (counting from 0th, the identity permutation) of A055089, its inverse permutation is [3,1,2] which is 3rd, thus a(4)=3 and a(3)=4.
		

Programs

  • Maple
    PermRevLexRank := proc(pp) local p,n,i,j,r; p := pp; n := nops(p); r := 0; for j from n by -1 to 1 do r := r + (((j-p[j])*((j-1)!))); for i from 1 to (j-1) do if(p[i] > p[j]) then p[i] := p[i]-1; fi; od; od; RETURN(r); end;
    [seq(PermRevLexRank(convert(invperm(convert(PermRevLexUnrank(j), 'disjcyc')), 'permlist', nops(PermRevLexUnrank(j)))), j=0..200)];
  • Mathematica
    A056019 = Position[Ordering /@ #, #[[#2]]][[1, 1]] - 1 &[Reverse@SortBy[Permutations@Range@Ceiling@InverseFunction[Factorial][# + 1], Reverse], # + 1] &; Array[A056019, 69, 0] (* JungHwan Min, Oct 10 2016 *)
    A056019L = Ordering[Ordering /@ Permutations@Range@Ceiling@InverseFunction[Factorial][# + 1]] - 1 &; A056019L[24] (* JungHwan Min, Oct 10 2016 *)