cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056022 Numbers k such that k^6 == 1 (mod 7^2).

Original entry on oeis.org

1, 18, 19, 30, 31, 48, 50, 67, 68, 79, 80, 97, 99, 116, 117, 128, 129, 146, 148, 165, 166, 177, 178, 195, 197, 214, 215, 226, 227, 244, 246, 263, 264, 275, 276, 293, 295, 312, 313, 324, 325, 342, 344, 361, 362, 373, 374, 391, 393, 410, 411, 422, 423, 440, 442
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Crossrefs

Cf. A381319 (general case mod n^2).

Programs

  • Mathematica
    Select[ Range[ 500 ], PowerMod[ #, 6, 49 ]==1& ]
    LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {1, 18, 19, 30, 31, 48, 50}, 61] (* Mike Sheppard, Feb 18 2025 *)
  • PARI
    isok(k) = Mod(k, 49)^6 == 1; \\ Michel Marcus, Jun 30 2021

Formula

From Mike Sheppard, Feb 18 2025 : (Start)
a(n) = a(n-1) + a(n-6) - a(n-7).
a(n) = a(n-6) + 7^2.
a(n) ~ (7^2/6)*n.
G.f.: (1 + x*(17 + x + 11*x^2 + x^3 + 17*x^4 + x^5))/(1 - x - x^6 + x^7). (End)