cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056026 Numbers k such that k^14 == 1 (mod 15^2).

Original entry on oeis.org

1, 26, 199, 224, 226, 251, 424, 449, 451, 476, 649, 674, 676, 701, 874, 899, 901, 926, 1099, 1124, 1126, 1151, 1324, 1349, 1351, 1376, 1549, 1574, 1576, 1601, 1774, 1799, 1801, 1826, 1999, 2024, 2026, 2051, 2224, 2249, 2251, 2276, 2449, 2474, 2476, 2501
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Comments

Numbers congruent to {1, 26, 129, 224} mod 225.

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 3000 ], PowerMod[ #, 14, 225 ]==1& ]
    LinearRecurrence[{1,0,0,1,-1},{1,26,199,224,226},50] (* Harvey P. Dale, Nov 11 2011 *)
  • PARI
    a(n) = (-225 - 125*(-1)^n + (171-171*I)*(-I)^n + (171+171*I)*I^n + 450*n)/8 \\ Colin Barker, Oct 16 2015
    
  • PARI
    Vec(x*(1+25*x+173*x^2+25*x^3+x^4)/((1+x)*(1+x^2)*(x-1)^2) + O(x^100)) \\ Colin Barker, Oct 16 2015

Formula

G.f.: x*(1+25*x+173*x^2+25*x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
a(1)=1, a(2)=26, a(3)=199, a(4)=224, a(5)=226, a(n) = a(n-1)+a(n-4)-a(n-5). - Harvey P. Dale, Nov 11 2011
a(n) = (-225 - 125*(-1)^n + (171-171*i)*(-i)^n + (171+171*i)*i^n + 450*n)/8 where i=sqrt(-1). - Colin Barker, Oct 16 2015