cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056028 Numbers k such that k^18 == 1 (mod 19^2).

Original entry on oeis.org

1, 28, 54, 62, 68, 69, 99, 116, 127, 234, 245, 262, 292, 293, 299, 307, 333, 360, 362, 389, 415, 423, 429, 430, 460, 477, 488, 595, 606, 623, 653, 654, 660, 668, 694, 721, 723, 750, 776, 784, 790, 791, 821, 838, 849, 956, 967, 984, 1014, 1015, 1021, 1029
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Crossrefs

Cf. A381319 (general case mod n^2).

Programs

  • Mathematica
    x=19; Select[ Range[ 1250 ], PowerMod[ #, x-1, x^2 ]==1& ]
  • PARI
    isok(n) = Mod(n, 19^2)^18 == 1; \\ Michel Marcus, Feb 12 2017
    
  • PARI
    Vec(x*(x^18 +27*x^17 +26*x^16 +8*x^15 +6*x^14 +x^13 +30*x^12 +17*x^11 +11*x^10 +107*x^9 +11*x^8 +17*x^7 +30*x^6 +x^5 +6*x^4 +8*x^3 +26*x^2 +27*x +1) / (x^19 -x^18 -x +1) + O(x^100)) \\ Colin Barker, Feb 12 2017

Formula

a(n) = a(n-1) + a(n-18) - a(n-19). - Matthew House, Feb 12 2017
G.f.: x*(x^18 +27*x^17 +26*x^16 +8*x^15 +6*x^14 +x^13 +30*x^12 +17*x^11 +11*x^10 +107*x^9 +11*x^8 +17*x^7 +30*x^6 +x^5 +6*x^4 +8*x^3 +26*x^2 +27*x +1) / (x^19 -x^18 -x +1). - Colin Barker, Feb 12 2017
From Mike Sheppard, Feb 20 2025: (Start)
a(n) = a(n-18) + 19^2.
a(n) ~ (19^2/18)*n. (End)