A056100 a(n) = sigma(n)*phi(n) + 1 (mod n).
0, 0, 0, 3, 0, 1, 0, 5, 7, 3, 0, 5, 0, 5, 13, 9, 0, 1, 0, 17, 7, 9, 0, 1, 21, 11, 19, 1, 0, 7, 0, 17, 4, 15, 33, 13, 0, 17, 19, 1, 0, 19, 0, 9, 28, 21, 0, 17, 43, 11, 10, 13, 0, 1, 21, 25, 31, 27, 0, 49, 0, 29, 28, 33, 3, 43, 0, 21, 16, 27, 0, 1, 0, 35, 11, 25, 63, 55, 0, 33, 55, 39, 0, 1
Offset: 1
References
- George E. Andrews, "Number Theory," Dover Publ., NY, 1971, page 85.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Mod[DivisorSigma[1, n]*EulerPhi[n] + 1, n], {n, 1, 100}]
-
PARI
a(n) = (sigma(n)*eulerphi(n)+1) % n; \\ Michel Marcus, Aug 05 2025
-
Python
from sympy import totient, divisor_sigma def A056100(n): return (totient(n)*divisor_sigma(n)+1)%n # Karl-Heinz Hofmann, Aug 12 2025
Comments