A056132 Sequence A001033 gives the numbers n such that the sum of the squares of n consecutive odd numbers x^2 + (x+2)^2 + ... +(x+2n-2)^2 = k^2 for some integer k. For each n, this sequence gives the least value of k.
1, 172, 265, 715, 1407, 2002, 808, 1241, 139195, 1570, 2739, 52614, 4511, 3953, 52689, 6986, 178033207, 52094, 24485, 10416, 6118, 7667, 1889970, 8283, 52271, 13143, 10697, 40934, 32095, 28260, 1117797, 13253, 12987, 24926, 23276, 14329
Offset: 1
Keywords
Links
- Christopher E. Thompson, Table of n, a(n) for n = 1..7103 (extends first 100 terms computed by T. D. Noe).
Extensions
Corrected and extended by T. D. Noe, Oct 24 2007
Term corresponding to 1024 in A001033 was missing from b-file. Christopher E. Thompson, Feb 05 2016