cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056153 Leading least prime signatures: a(n) is in A025487 but a(n)/2 is not.

Original entry on oeis.org

1, 6, 30, 36, 180, 210, 216, 900, 1080, 1260, 1296, 2310, 5400, 6300, 6480, 7560, 7776, 13860, 27000, 30030, 32400, 37800, 38880, 44100, 45360, 46656, 69300, 83160, 162000, 180180, 189000, 194400, 226800, 233280, 264600, 272160, 279936
Offset: 1

Views

Author

Alford Arnold, Jul 30 2000

Keywords

Comments

Values of A025487 can be mapped to the numeric partitions. In a similar way, values of a(n) can be mapped to the cyclic partitions by noting that the factorization vector begins (k, k, ...). E.g. 1260 = 2*2*3*3*5*7 yielding the vector (2,2,1,1).
All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 = k2 >= ... >= k_n, sorted. - Robert Israel, Feb 20 2019

Examples

			36 is a term because 36 is a member of A025487 but 36/2 = 18 is not.
2520 is a member of A025487 as is 2520/2 = 1260, so 2520 is not a term.
		

Crossrefs

Programs

  • Maple
    N:= 10^8: # to get all terms <= N
    S:= [seq([i,i,6^i],i=0..floor(log[6](N)))]:
    Res:= {seq(s[-1],s=S)}:
    r:= 6:
    for n from 3 do
      p:= ithprime(n);
      r:= r*p;
      if r > N then break fi;
      S:= map(t ->seq([op(t[1..-2]),i,t[-1]*p^i],i=1..min(t[-2], floor(log[p](N/t[-1])))), S);
      Res:= Res union {seq(s[-1],s=S)};
    od:
    sort(convert(Res, list)); # Robert Israel, Feb 20 2019
  • Mathematica
    max = 300000; ss = {}; A025487 = Join[{1}, Reap[ Do[s = Sort[FactorInteger[n][[All, 2]]]; If[FreeQ[ss, s], AppendTo[ss, s]; Sow[n]], {n, 2, max}]][[2, 1]]]; Select[A025487, FreeQ[A025487, #/2] &] (* Jean-François Alcover, Jul 11 2012 *)
  • PARI
    isli(n) = if(n==1, return(1)); if (frac(n), return (0)); my(f = factor(n)); f[#f~, 1] == prime(#f~) && vecsort(f[, 2], , 4) == f[, 2]; \\ A025487
    isok(n) = isli(n) && !isli(n/2); \\ Michel Marcus, Feb 20 2019

Formula

Sum_{n>=1} 1/a(n) = A161360 / 2 = 1.247903257029... . - Amiram Eldar, Jul 25 2024