A056153 Leading least prime signatures: a(n) is in A025487 but a(n)/2 is not.
1, 6, 30, 36, 180, 210, 216, 900, 1080, 1260, 1296, 2310, 5400, 6300, 6480, 7560, 7776, 13860, 27000, 30030, 32400, 37800, 38880, 44100, 45360, 46656, 69300, 83160, 162000, 180180, 189000, 194400, 226800, 233280, 264600, 272160, 279936
Offset: 1
Keywords
Examples
36 is a term because 36 is a member of A025487 but 36/2 = 18 is not. 2520 is a member of A025487 as is 2520/2 = 1260, so 2520 is not a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 (first 108 terms from Michel Marcus)
Programs
-
Maple
N:= 10^8: # to get all terms <= N S:= [seq([i,i,6^i],i=0..floor(log[6](N)))]: Res:= {seq(s[-1],s=S)}: r:= 6: for n from 3 do p:= ithprime(n); r:= r*p; if r > N then break fi; S:= map(t ->seq([op(t[1..-2]),i,t[-1]*p^i],i=1..min(t[-2], floor(log[p](N/t[-1])))), S); Res:= Res union {seq(s[-1],s=S)}; od: sort(convert(Res, list)); # Robert Israel, Feb 20 2019
-
Mathematica
max = 300000; ss = {}; A025487 = Join[{1}, Reap[ Do[s = Sort[FactorInteger[n][[All, 2]]]; If[FreeQ[ss, s], AppendTo[ss, s]; Sow[n]], {n, 2, max}]][[2, 1]]]; Select[A025487, FreeQ[A025487, #/2] &] (* Jean-François Alcover, Jul 11 2012 *)
-
PARI
isli(n) = if(n==1, return(1)); if (frac(n), return (0)); my(f = factor(n)); f[#f~, 1] == prime(#f~) && vecsort(f[, 2], , 4) == f[, 2]; \\ A025487 isok(n) = isli(n) && !isli(n/2); \\ Michel Marcus, Feb 20 2019
Formula
Sum_{n>=1} 1/a(n) = A161360 / 2 = 1.247903257029... . - Amiram Eldar, Jul 25 2024
Comments