cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056188 a(1) = 1; for n>1, sum of binomial(n,k) as k runs over RRS(n), the reduced residue system of n.

Original entry on oeis.org

1, 2, 6, 8, 30, 12, 126, 128, 342, 260, 2046, 1608, 8190, 4760, 15840, 32768, 131070, 80820, 524286, 493280, 1165542, 1391720, 8388606, 5769552, 26910650, 23153832, 89478486, 131849648, 536870910, 352845960, 2147483646, 2147483648
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Comments

a(n) is a multiple of n for all n.
For n > 1, a(n) is the number of binary words of length n such that the quantities of 0's and 1's are coprime. - Bartlomiej Pawlik, Sep 03 2023

Examples

			For n=10, RRS[10]={1,3,7,9}, the corresponding coefficients are {10,120,120,10}, so the sum a(10)=260.
		

Crossrefs

Programs

  • Maple
    A056188 := proc(n)
        a := 0 ;
        for k from 1 to n do
            if igcd(k,n) = 1 then
                a := a+binomial(n,k);
            end if ;
        end do:
        a ;
    end proc: # R. J. Mathar, Sep 02 2017
  • Mathematica
    f[n_] := Plus @@ Binomial[n, Select[ Range[n], GCD[n, # ] == 1 &]]; Table[ f[n], {n, 33}] (* Robert G. Wilson v, Nov 04 2004 *)
  • PARI
    a(n) = if (n==1, 1, sum(k=0, n, if (gcd(n,k) == 1, binomial(n,k)))); \\ Michel Marcus, Mar 22 2020

Formula

a(n) = Sum{binomial[n, k]; GCD[n, k]=1, 0<=k<=n}.
For n=prime, a(n)=2^n-2 because all k<=n except 0 and n are used.