A056188 a(1) = 1; for n>1, sum of binomial(n,k) as k runs over RRS(n), the reduced residue system of n.
1, 2, 6, 8, 30, 12, 126, 128, 342, 260, 2046, 1608, 8190, 4760, 15840, 32768, 131070, 80820, 524286, 493280, 1165542, 1391720, 8388606, 5769552, 26910650, 23153832, 89478486, 131849648, 536870910, 352845960, 2147483646, 2147483648
Offset: 1
Keywords
Examples
For n=10, RRS[10]={1,3,7,9}, the corresponding coefficients are {10,120,120,10}, so the sum a(10)=260.
Links
- Laszlo Toth, Weighted gcd-sum functions, J. Integer Sequences, 14 (2011), Article 11.7.7.
Programs
-
Maple
A056188 := proc(n) a := 0 ; for k from 1 to n do if igcd(k,n) = 1 then a := a+binomial(n,k); end if ; end do: a ; end proc: # R. J. Mathar, Sep 02 2017
-
Mathematica
f[n_] := Plus @@ Binomial[n, Select[ Range[n], GCD[n, # ] == 1 &]]; Table[ f[n], {n, 33}] (* Robert G. Wilson v, Nov 04 2004 *)
-
PARI
a(n) = if (n==1, 1, sum(k=0, n, if (gcd(n,k) == 1, binomial(n,k)))); \\ Michel Marcus, Mar 22 2020
Formula
a(n) = Sum{binomial[n, k]; GCD[n, k]=1, 0<=k<=n}.
For n=prime, a(n)=2^n-2 because all k<=n except 0 and n are used.
Comments