A056193 Goodstein sequence starting with 4: to calculate a(n+1), write a(n) in the hereditary representation in base n+2, then bump the base to n+3, then subtract 1.
4, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, 348, 401, 458, 519, 584, 653, 726, 803, 884, 969, 1058, 1151, 1222, 1295, 1370, 1447, 1526, 1607, 1690, 1775, 1862, 1951, 2042, 2135, 2230, 2327, 2426, 2527, 2630, 2735, 2842, 2951, 3062, 3175, 3290, 3407
Offset: 0
Examples
a(0) = 4 = 2^2, a(1) = 3^3 - 1 = 26 = 2*3^2 + 2*3 + 2, a(2) = 2*4^2 + 2*4 + 2 - 1 = 41 = 2*4^2 + 2*4 + 1, a(3) = 2*5^2 + 2*5 + 1 - 1 = 60 = 2*5^2 + 2*5, a(4) = 2*6^2 + 2*6 - 1 = 83 = 2*6^2 + 6 + 5, a(5) = 2*7^2 + 7 + 5 - 1 = 109 etc.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 (final 2 terms from Nicholas Matteo)
- R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic, Vol. 9, No. 2 (1944), 33-41.
- Eric Weisstein's World of Mathematics, Goodstein Sequence.
- Wikipedia, Goodstein's Theorem
- Reinhard Zumkeller, Haskell programs for Goodstein sequences
Crossrefs
Programs
-
Haskell
See Zumkeller link
-
PARI
lista(nn) = {print1(a = 4, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "););} \\ Michel Marcus, Feb 22 2016
Extensions
Edited by N. J. A. Sloane, Mar 06 2006
Offset changed to 0 by Nicholas Matteo, Sep 04 2019
Comments