A056286 Number of n-bead necklaces with exactly six different colored beads.
0, 0, 0, 0, 0, 120, 2160, 23940, 211680, 1643544, 11748240, 79419180, 516257280, 3262443120, 20193277104, 123071707080, 741419995680, 4427490147480, 26264144909520, 155018841055596, 911509010154720, 5344538384445120, 31272099902089200, 182707081122261480
Offset: 1
Keywords
Examples
For n=6, the 120 necklaces are A followed by the 120 permutations of BCDEF.
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
k=6; Table[k!DivisorSum[n,EulerPhi[#]StirlingS2[n/#,k]&]/n,{n,1,30}] (* Robert A. Russell, Sep 26 2018 *)
Formula
From Robert A. Russell, Sep 26 2018: (Start)
a(n) = (k!/n) Sum_{d|n} phi(d) S2(n/d,k), where k=6 is the number of colors and S2 is the Stirling subset number A008277.
G.f.: -Sum_{d>0} (phi(d)/d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=6 is the number of colors. (End)
Comments