A056288 Number of primitive (period n) n-bead necklaces with exactly three different colored beads.
0, 0, 2, 9, 30, 89, 258, 720, 2016, 5583, 15546, 43215, 120750, 338001, 950030, 2677770, 7573350, 21478632, 61088874, 174179133, 497812378, 1425832077, 4092087522, 11765778330, 33887517840, 97756266615, 282414622728, 816999371955, 2366509198350, 6862929885407
Offset: 1
Keywords
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): b:= proc(n, k) option remember; `if`(n=0, 1, add(mobius(n/d)*k^d, d=divisors(n))/n) end: a:= n-> add(b(n, 3-j)*binomial(3, j)*(-1)^j, j=0..3): seq(a(n), n=1..30); # Alois P. Heinz, Jan 25 2015
-
Mathematica
b[n_, k_] := b[n, k] = If[n==0, 1, DivisorSum[n, MoebiusMu[n/#]*k^#&]/n]; a[n_] := Sum[b[n, 3 - j]*Binomial[3, j]*(-1)^j, {j, 0, 3}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jun 06 2018, after Alois P. Heinz *)
Formula
Sum mu(d)*A056283(n/d) where d|n.
Comments