A056289 Number of primitive (period n) n-bead necklaces with exactly four different colored beads.
0, 0, 0, 6, 48, 260, 1200, 5100, 20720, 81828, 318000, 1222870, 4675440, 17813820, 67769504, 257695800, 980240880, 3731732200, 14222737200, 54278498154, 207438936800, 793940157900, 3043140078000, 11681056021300, 44900438149248, 172824327151140, 666070256468960
Offset: 1
Keywords
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): b:= proc(n, k) option remember; `if`(n=0, 1, add(mobius(n/d)*k^d, d=divisors(n))/n) end: a:= n-> add(b(n, 4-j)*binomial(4, j)*(-1)^j, j=0..4): seq(a(n), n=1..30); # Alois P. Heinz, Jan 25 2015
-
Mathematica
b[n_, k_] := b[n, k] = If[n==0, 1, DivisorSum[n, MoebiusMu[n/#]*k^#&]/n]; a[n_] := Sum[b[n, 4-j]*Binomial[4, j]*(-1)^j, {j, 0, 4}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 20 2017, after Alois P. Heinz *)
Formula
a(n) = Sum_{d|n} mu(d)*A056284(n/d).
Comments