cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056298 Number of n-bead necklace structures using exactly five different colored beads.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 20, 136, 773, 4281, 22430, 115100, 577577, 2863227, 14051164, 68515514, 332514803, 1608800691, 7767857090, 37460388596, 180536313547, 869901397479, 4192038616700, 20208367895980
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A152175.

Programs

  • Mathematica
    From Robert A. Russell, May 29 2018: (Start)
    Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &],
      Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
    Table[Coefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/n , x, 5],
      {n, 1, 40}] (* after Gilbert and Riordan *)
    Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 60], StirlingS2[n/#+4, 5] - 6 StirlingS2[n/#+3, 5] + 11 StirlingS2[n/#+2, 5] - 6 StirlingS2[n/#+1, 5], Divisible[#, 30], StirlingS2[n/#+4, 5] - 8 StirlingS2[n/#+3, 5] + 26 StirlingS2[n/#+2, 5] - 43 StirlingS2[n/#+1, 5] + 30 StirlingS2[n/#, 5], Divisible[#, 20], StirlingS2[n/#+4, 5] - 8 StirlingS2[n/#+3, 5] + 23 StirlingS2[n/#+2, 5] - 24 StirlingS2[n/#+1, 5], Divisible[#, 15], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 38 StirlingS2[n/#+2, 5] - 65 StirlingS2[n/#+1, 5] + 45 StirlingS2[n/#, 5], Divisible[#, 12], 4 StirlingS2[n/#+3, 5] - 24 StirlingS2[n/#+2, 5] + 44 StirlingS2[n/#+1, 5] - 24 StirlingS2[n/#, 5], Divisible[#, 10], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 38 StirlingS2[n/#+2, 5] - 61 StirlingS2[n/#+1, 5] + 30 StirlingS2[n/#, 5], Divisible[#, 6], 2 StirlingS2[n/#+3, 5] - 9 StirlingS2[n/#+2, 5] + 7 StirlingS2[n/#+1, 5] + 6 StirlingS2[n/#, 5], Divisible[#, 5], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 35 StirlingS2[n/#+2, 5] - 50 StirlingS2[n/#+1, 5] + 25 StirlingS2[n/#, 5], Divisible[#, 4], 2 StirlingS2[n/#+3, 5] - 12 StirlingS2[n/#+2, 5] + 26 StirlingS2[n/#+1, 5] - 24 StirlingS2[n/#, 5], Divisible[#, 3], 3 StirlingS2[n/#+2, 5] - 15 StirlingS2[n/#+1, 5] + 21 StirlingS2[n/#, 5], Divisible[#, 2], 3 StirlingS2[n/#+2, 5] - 11 StirlingS2[n/#+1, 5] + 6 StirlingS2[n/#, 5], True, StirlingS2[n/#, 5]] &], {n, 1, 40}]
    mx = 40; Drop[CoefficientList[Series[-Sum[(EulerPhi[d] / d) Which[
      Divisible[d, 60], Log[1 - 5x^d] - Log[1 - 4x^d], Divisible[d, 30],
      (3 Log[1 - 5x^d] - 3 Log[1 - 4x^d] + Log[1 - x^d]) / 4, Divisible[d, 20],
      (2 Log[1 - 5x^d] - 2 Log[1 - 4x^d] + Log[1 - 2x^d] - Log[1 - x^d]) / 3,
      Divisible[d, 15], (3 Log[1 - 5x^d] - 3 Log[1 - 4x^d] + 2 Log[1 - 3x^d] -
      2 Log[1 - 2x^d] + 3 Log[1 - x^d]) / 8, Divisible[d, 12],
      (4 Log[1 - 5x^d] - 5 Log[1 - 4x^d]) / 5, Divisible[d, 10],
      (5 Log[1 - 5x^d] - 5 Log[1 - 4x^d] + 4 Log[1 - 2x^d] - Log[1 - x^d]) / 12,
      Divisible[d, 6], (11 Log[1 - 5x^d] - 15 Log[1 - 4x^d] + 5 Log[1 - x^d]) /
      20, Divisible[d, 5], (5 Log[1 - 5x^d] - Log[1 - 4x^d] + 2 Log[1 - 3x^d] -
      2 Log[1 - 2x^d] + Log[1 - x^d]) / 24, Divisible[d, 4], (7 Log[1 - 5x^d] -
      10 Log[1 - 4x^d] + 5 Log[1 - 2x^d] - 5 Log[1 - x^d]) / 15,
      Divisible[d, 3], (7 Log[1 - 5x^d] - 15 Log[1 - 4x^d] + 10 Log[1 - 3x^d] -
      10 Log[1 - 2x^d] + 15 Log[1 - x^d]) / 40, Divisible[d, 2],
      (13 Log[1 - 5x^d] - 25 Log[1 - 4x^d] + 20 Log[1 - 2x^d] -
      5 Log[1 - x^d]) / 60, True, (Log[1 - 5x^d] - 5 Log[1 - 4x^d] +
      10 Log[1 - 3x^d] - 10 Log[1 - 2x^d] + 5 Log[1 - x^d]) / 120], {d, 1, mx}], {x, 0, mx}], x], 1]
    (End)

Formula

a(n) = A056293(n) - A056292(n).
From Robert A. Russell, May 29 2018: (Start)
a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 60] * (S2(n/d+4,5) -
6*S2(n/d+3,5) + 11*S2(n/d+2,5) - 6*S2(n/d+1,5)) + [d==30 mod 60] *
(S2(n/d+4,5) - 8*S2(n/d+3,5) + 26*S2(n/d+2,5) - 43*S2(n/d+1,5) +
30*S2(n/d,5)) + [d==20 mod 60 | d==40 mod 60] * (S2(n/d+4,5) -
8*S2(n/d+3,5) + 23*S2(n/d+2,5) - 24*S2(n/d+1,5)) + [d==15 mod 60 |
d==45 mod 60] * (S2(n/d+4,5) - 10*S2(n/d+3,5) + 38*S2(n/d+2,5) -
65*S2(n/d+1,5) + 45*S2(n/d,5)) + [d mod 60 in {12,24,36,48}] *
(4*S2(n/d+3,5) - 24*S2(n/d+2,5) + 44*S2(n/d+1,5) - 24*S2(n/d,5)) +
[d=10 mod 60 | d==50 mod 60] * (S2(n/d+4,5) - 10*S2(n/d+3,5) +
38*S2(n/d+2,5) - 61*S2(n/d+1,5) + 30*S2(n/d,5)) + [d mod 60 in
{6,18,42,54}] * (2*S2(n/d+3,5) - 9*S2(n/d+2,5) + 7*S2(n/d+1,5) +
6*S2(n/d,5)) + [d mod 60 in {5,25,35,55}] * (S2(n/d+4,5) -
10*S2(n/d+3,5) + 35*S2(n/d+2,5) - 50*S2(n/d+1,5) + 25*S2(n/d,5)) +
[d mod 60 in {4,8,16,28,32,44,52,56}] * (2*S2(n/d+3,5) - 12*S2(n/d+2,5) +
26*S2(n/d+1,5) - 24*S2(n/d,5)) + [d mod 60 in {3,9,21,27,33,39,51,57}] *
(3*S2(n/d+2,5) - 15*S2(n/d+1,5) + 21*S2(n/d,5)) + [d mod 60 in
{2,14,22,26,34,38,46,58}] * (3*S2(n/d+2,5) - 11*S2(n/d+1,5) +
6*S2(n/d,5)) + [d mod 60 in {1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,
59}] * S2(n/d,5)), where S2(n,k) is the Stirling subset number, A008277.
G.f.: -Sum_{d>0} (phi(d) / d) * ([d==0 mod 60] * (log(1-4x^d) -
log(1-3x^d)) + [d==30 mod 60] * (3*log[1-5x^d) - 3*log(1-4x^d) +
log(1-x^d)) / 4 + [d==20 mod 60 | d==40 mod 60] * (2*log(1-5x^d) -
2*log(1-4x^d) + log(1-2x^d) - log(1-x^d)) / 3 +
[d==15 mod 60 | d==45 mod 60] * (3*log(1-5x^d) - 3*log(1-4x^d) +
2*log(1-3x^d) - 2*log(1-2x^d) + 3*log(1-x^d)) / 8 + [d mod 60 in
{12,24,36,48}] * (4*log(1-5x^d) - 5*log(1-4x^d)) / 5 + [d=10 mod 60 |
d==50 mod 60] * (5*log(1-5x^d) - 5*log(1-4x^d) + 4*log(1-2x^d) -
log(1-x^d)) / 12 + [d mod 60 in {6,18,42,54}] * (11*log(1-5x^d) -
15*log(1-4x^d) + 5*log(1-x^d)) / 20 + [d mod 60 in {5,25,35,55}] *
(5*log(1-5x^d) - log(1-4x^d) + 2*log(1-3x^d) - 2*log(1-2x^d) +
log(1-x^d)) / 24 + [d mod 60 in {4,8,16,28,32,44,52,56}] *
(7*log(1-5x^d) - 10*log(1-4x^d) + 5*log(1-2x^d) - 5*log(1-x^d)) /
15 + [d mod 60 in {3,9,21,27,33,39,51,57}] * (7*log(1-5x^d) -
15*log(1-4x^d) + 10*log(1-3x^d) - 10*log(1-2x^d) + 15*log(1-x^d)) /
40 + [d mod 60 in {2,14,22,26,34,38,46,58}] * (13*log(1-5x^d) -
25*log(1-4x^d) + 20*log(1-2x^d) - 5*log(1-x^d)) / 60 + [d mod 60 in
{1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59}] * (log(1-5x^d) -
5*log(1-4x^d) + 10*log(1-3x^d) - 10*log(1-2x^d) + 5*log(1-x^d)) / 120).
(End)