A056325 Number of reversible string structures with n beads using a maximum of six different colors.
1, 1, 2, 4, 11, 32, 117, 467, 2135, 10480, 55091, 301633, 1704115, 9819216, 57365191, 338134521, 2005134639, 11937364184, 71254895955, 426063226937, 2550552314219, 15280103807200, 91588104196415, 549159428968825
Offset: 0
Examples
For a(4)=11, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABCA, ABBC, and ABCD. The 4 chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Allan Bickle, How to Count k-Paths, J. Integer Sequences, 25 (2022) Article 22.5.6.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- J. Eckhoff, Extremal interval graphs, J. Graph Theory 17 1 (1993), 117-127.
- L. Markenzon, O. Vernet, and P. R. da Costa Pereira, A clique-difference encoding scheme for labelled k-path graphs, Discrete Appl. Math. 156 (2008), 3216-3222.
- Index entries for linear recurrences with constant coefficients, signature (16,-84,84,685,-2140,180,7200,-8244,-4176,11664,-5184).
Crossrefs
Programs
-
Mathematica
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *) k=6; Table[Sum[StirlingS2[n,j]+Ach[n,j],{j,0,k}]/2,{n,0,40}] (* Robert A. Russell, Oct 28 2018 *) LinearRecurrence[{16, -84, 84, 685, -2140, 180, 7200, -8244, -4176, 11664, -5184}, {1, 1, 2, 4, 11, 32, 117, 467, 2135, 10480, 55091, 301633}, 40] (* Robert A. Russell, Oct 28 2018 *)
-
PARI
Vec((1 - 15*x + 70*x^2 - 28*x^3 - 654*x^4 + 1479*x^5 + 783*x^6 - 5481*x^7 + 3512*x^8 + 4640*x^9 - 5922*x^10 + 1530*x^11) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 6*x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)) + O(x^30)) \\ Colin Barker, Apr 15 2020
Formula
Use de Bruijn's generalization of Polya's enumeration theorem as discussed in reference.
From Robert A. Russell, Oct 28 2018: (Start)
a(n) = Sum_{j=0..k} (S2(n,j) + Ach(n,j)) / 2, where k=6 is the maximum number of colors, S2 is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
(End)
From Colin Barker, Mar 24 2020: (Start)
G.f.: (1 - 15*x + 70*x^2 - 28*x^3 - 654*x^4 + 1479*x^5 + 783*x^6 - 5481*x^7 + 3512*x^8 + 4640*x^9 - 5922*x^10 + 1530*x^11) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 6*x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)).
a(n) = 16*a(n-1) - 84*a(n-2) + 84*a(n-3) + 685*a(n-4) - 2140*a(n-5) + 180*a(n-6) + 7200*a(n-7) - 8244*a(n-8) - 4176*a(n-9) + 11664*a(n-10) - 5184*a(n-11) for n>11.
(End)
From Allan Bickle, Jun 23 2022: (Start)
a(n) = (1/1440)*6^n + (1/96)*4^n + (1/36)*3^n + (3/32)*2^n + (19/360)*6^(n/2) + (1/9)*3^(n/2) + (1/8)*2^(n/2) + 17/60 for n > 0 even;
a(n) = (1/1440)*6^n + (1/96)*4^n + (1/36)*3^n + (3/32)*2^n + (13/720)*6^((n+1)/2) + (1/18)*3^((n+1)/2) + (1/16)*2^((n+1)/2) + 17/60 for n > 0 odd. (End)
Extensions
Another term from Robert A. Russell, Oct 29 2018
a(0)=1 prepended by Robert A. Russell, Nov 09 2018
Comments