cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056347 Number of primitive (period n) bracelets using a maximum of six different colored beads.

Original entry on oeis.org

6, 15, 50, 210, 882, 4220, 20640, 107100, 563730, 3036411, 16514100, 90778485, 502474350, 2799199380, 15673672238, 88162569180, 497847963690, 2821127257950, 16035812864940, 91404065292036
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 6 of A276550.
Cf. A032164.

Programs

  • Mathematica
    mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)))/2,{n,mx}]; CoefficientList[Series[gf[x,6],{x,0,mx}],x] (* Herbert Kociemba, Nov 28 2016 *)

Formula

sum mu(d)*A056341(n/d) where d|n.
From Herbert Kociemba, Nov 28 2016: (Start)
More generally, gf(k) is the g.f. for the number of bracelets with primitive period n and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n + Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End)