A056391 Number of step shifted (decimated) sequence structures using a maximum of two different symbols.
1, 2, 3, 6, 6, 20, 14, 48, 52, 140, 108, 624, 352, 1400, 2172, 4464, 4116, 22112, 14602, 68016, 88376, 209936, 190746, 1075200, 839128, 2797000, 3730584, 11276704, 9587580, 67195520, 35792568
Offset: 1
Keywords
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000 (terms 1..200 from Andrew Howroyd)
- Andrew Howroyd, Polya Enumeration in PARI (many sequences included)
- Marks R. Nester, Mathematical investigations of some plant interaction designs, Chapter 2, Finite and Periodic Sequences, plus Notes and Errata.
Programs
-
Mathematica
a[m_, n_] := (1/EulerPhi[n])*Sum[If[GCD[k, n] == 1, m^DivisorSum[n, EulerPhi[#]/MultiplicativeOrder[k, #]&], 0], {k, 1, n}]; a[n_] := a[2, n]/2; Array[a, 40] (* Jean-François Alcover, Jun 12 2017 *)
-
PARI
a(n)=sum(k=1, n, if(gcd(k, n)==1, 2^(sumdiv(n, d, eulerphi(d)/znorder(Mod(k, d)))-1), 0))/eulerphi(n); \\ Andrew Howroyd, Apr 20 2017
-
PARI
\\ alternative using Polya enumeration functions (see attachment) a(n) = NonequivalentStructs(StepShiftPerms(n),2); \\ Andrew Howroyd, Oct 01 2017
Formula
Use de Bruijn's generalization of Polya's enumeration theorem as discussed in reference.
a(n) = A056371(n) / 2. - Andrew Howroyd, Apr 20 2017
a(n) = A288620(n, 2) + 1. - Andrew Howroyd, Jun 13 2017
Comments