A056503 Number of periodic palindromic structures of length n using a maximum of two different symbols.
1, 2, 2, 4, 4, 7, 8, 14, 16, 26, 32, 51, 64, 100, 128, 198, 256, 392, 512, 778, 1024, 1552, 2048, 3091, 4096, 6176, 8192, 12324, 16384, 24640, 32768, 49222, 65536, 98432, 131072, 196744, 262144, 393472, 524288, 786698, 1048576, 1573376, 2097152, 3146256, 4194304
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Sep 16 2018: (Start) The sequence of palindromic cyclic compositions begins: (1) (2) (3) (4) (5) (6) (7) (11) (111) (22) (113) (33) (115) (112) (122) (114) (133) (1111) (11111) (222) (223) (1122) (11113) (11112) (11212) (111111) (11122) (1111111) (End)
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
(* b = A164090, c = A045674 *) b[n_] := (1/4)*(7 - (-1)^n)*2^((1/4)*(2*n + (-1)^n - 1)); c[0] = 1; c[n_] := c[n] = If[EvenQ[n], 2^(n/2-1) + c[n/2], 2^((n-1)/2)]; a[n_?OddQ] := b[n]/2; a[n_?EvenQ] := (1/2)*(b[n] + c[n/2]); Array[a, 45] (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *) Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Function[q,And[Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And],Array[SameQ[RotateRight[q,#],Reverse[RotateRight[q,#]]]&,Length[q],1,Or]]]]],{n,15}] (* Gus Wiseman, Sep 16 2018 *)
Formula
a(2n+1) = A164090(2n+1)/2 = 2^n, a(2n) = (A164090(2n) + A045674(n))/2. - Andrew Howroyd, Sep 29 2017
Extensions
a(17)-a(45) from Andrew Howroyd, Apr 07 2017
Comments