cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056527 Numbers where iterated sum of digits of square settles down to a cyclic pattern (in fact 13, 16, 13, 16, ...).

Original entry on oeis.org

2, 4, 5, 7, 11, 13, 14, 16, 20, 22, 23, 25, 29, 31, 32, 34, 38, 40, 41, 43, 47, 49, 50, 52, 56, 58, 59, 61, 65, 67, 68, 70, 74, 76, 77, 79, 83, 85, 86, 88, 92, 94, 95, 97, 101, 103, 104, 106, 110, 112, 113, 115, 119, 121, 122, 124, 128, 130, 131, 133, 137, 139, 140
Offset: 1

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Comments

Numbers == 2, 4, 5 or 7 mod 9, i.e. such that n^4 is not congruent to n^2 mod 9.
Numbers congruent to {2, 4, 5, 7} mod 9.

Examples

			a(1)=2 because iteration starts 2, 4, 7, 13, 16, 13, 16, ....
		

Crossrefs

Cf. A004159 for sum of digits of square, A056020 where iteration settles to 1, A056020 where iteration settles to 9, also A056528, A056529. Unhappy numbers A031177 deal with iteration of square of sum of digits not settling to a single result.

Programs

  • Mathematica
    Flatten[Table[9n+{2,4,5,7},{n,0,20}]] (* or *) LinearRecurrence[{1,0,0,1,-1},{2,4,5,7,11},100] (* Harvey P. Dale, Apr 05 2015 *)
  • PARI
    Vec(x*(2 + 2*x + x^2 + 2*x^3 + 2*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^80)) \\ Colin Barker, Dec 19 2017

Formula

a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Harvey P. Dale, Apr 05 2015
From Colin Barker, Dec 19 2017: (Start)
G.f.: x*(2 + 2*x + x^2 + 2*x^3 + 2*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = (-9 + (-1)^(1+n) - (3-3*i)*(-i)^n - (3+3*i)*i^n + 18*n) / 8 where i=sqrt(-1).
(End)