A056527 Numbers where iterated sum of digits of square settles down to a cyclic pattern (in fact 13, 16, 13, 16, ...).
2, 4, 5, 7, 11, 13, 14, 16, 20, 22, 23, 25, 29, 31, 32, 34, 38, 40, 41, 43, 47, 49, 50, 52, 56, 58, 59, 61, 65, 67, 68, 70, 74, 76, 77, 79, 83, 85, 86, 88, 92, 94, 95, 97, 101, 103, 104, 106, 110, 112, 113, 115, 119, 121, 122, 124, 128, 130, 131, 133, 137, 139, 140
Offset: 1
Examples
a(1)=2 because iteration starts 2, 4, 7, 13, 16, 13, 16, ....
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 1, -1).
Crossrefs
Programs
-
Mathematica
Flatten[Table[9n+{2,4,5,7},{n,0,20}]] (* or *) LinearRecurrence[{1,0,0,1,-1},{2,4,5,7,11},100] (* Harvey P. Dale, Apr 05 2015 *)
-
PARI
Vec(x*(2 + 2*x + x^2 + 2*x^3 + 2*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^80)) \\ Colin Barker, Dec 19 2017
Formula
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Harvey P. Dale, Apr 05 2015
From Colin Barker, Dec 19 2017: (Start)
G.f.: x*(2 + 2*x + x^2 + 2*x^3 + 2*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = (-9 + (-1)^(1+n) - (3-3*i)*(-i)^n - (3+3*i)*i^n + 18*n) / 8 where i=sqrt(-1).
(End)
Comments