A056531 Sequence remaining after a fourth round of Flavius Josephus sieve; remove every fifth term of A056530.
1, 3, 7, 13, 19, 25, 27, 31, 39, 43, 49, 51, 61, 63, 67, 73, 79, 85, 87, 91, 99, 103, 109, 111, 121, 123, 127, 133, 139, 145, 147, 151, 159, 163, 169, 171, 181, 183, 187, 193, 199, 205, 207, 211, 219, 223, 229, 231, 241, 243, 247, 253, 259, 265, 267, 271, 279
Offset: 1
Links
- Index entries for sequences related to the Josephus Problem
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,1,-1},{1,3,7,13,19,25,27,31,39,43,49,51,61},60] (* Harvey P. Dale, Mar 11 2019 *)
Formula
From Chai Wah Wu, Jul 24 2016: (Start)
a(n) = a(n-1) + a(n-12) - a(n-13) for n > 13.
G.f.: x*(9*x^12 + 2*x^11 + 6*x^10 + 4*x^9 + 8*x^8 + 4*x^7 + 2*x^6 + 6*x^5 + 6*x^4 + 6*x^3 + 4*x^2 + 2*x + 1)/(x^13 - x^12 - x + 1). (End)
Comments