cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056531 Sequence remaining after a fourth round of Flavius Josephus sieve; remove every fifth term of A056530.

Original entry on oeis.org

1, 3, 7, 13, 19, 25, 27, 31, 39, 43, 49, 51, 61, 63, 67, 73, 79, 85, 87, 91, 99, 103, 109, 111, 121, 123, 127, 133, 139, 145, 147, 151, 159, 163, 169, 171, 181, 183, 187, 193, 199, 205, 207, 211, 219, 223, 229, 231, 241, 243, 247, 253, 259, 265, 267, 271, 279
Offset: 1

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Comments

Numbers {1, 3, 7, 13, 19, 25, 27, 31, 39, 43, 49, 51} mod 60.

Crossrefs

Compare A000027 for 0 rounds of sieve, A005408 after 1 round of sieve, A047241 after 2 rounds, A056530 after 3 rounds, A056531 after 4 rounds, A000960 after all rounds.
After n rounds the remaining sequence comprises A002944(n) numbers mod A003418(n+1), i.e. 1/(n+1) of them.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,1,-1},{1,3,7,13,19,25,27,31,39,43,49,51,61},60] (* Harvey P. Dale, Mar 11 2019 *)

Formula

From Chai Wah Wu, Jul 24 2016: (Start)
a(n) = a(n-1) + a(n-12) - a(n-13) for n > 13.
G.f.: x*(9*x^12 + 2*x^11 + 6*x^10 + 4*x^9 + 8*x^8 + 4*x^7 + 2*x^6 + 6*x^5 + 6*x^4 + 6*x^3 + 4*x^2 + 2*x + 1)/(x^13 - x^12 - x + 1). (End)