cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056534 Mapping from the ordering by product (A027750, A056538) to the ordering by sum (A002260, A004736) of ordered pairs (a,b), a>=1, b>=1.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 5, 10, 11, 15, 16, 8, 9, 21, 22, 28, 29, 12, 14, 36, 37, 13, 45, 46, 17, 20, 55, 56, 66, 67, 23, 18, 19, 27, 78, 79, 91, 92, 30, 35, 105, 106, 24, 26, 120, 121, 38, 25, 44, 136, 137, 153, 154, 47, 31, 34, 54, 171, 172, 190, 191, 57, 32, 33, 65, 210, 211, 39
Offset: 1

Views

Author

Antti Karttunen, Jun 20 2000

Keywords

Examples

			The "ordering by sum": (1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),...
The "ordering by product": (1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(2,2),(4,1),(1,5),(5,1),...
		

Crossrefs

Inverse: A056535.

Programs

  • Maple
    ordered_pair_perm := proc(upto_n) local a,i,j; a := []; for i from 1 to upto_n do for j in sort(divisors(i)) do a := [op(a),binomial(((i/j) + j - 1),2)+j]; od; od; RETURN(a); end;
  • Mathematica
    max = 21; A056534 = {}; For[i = 1, i <= max, i++, Do[ AppendTo[ A056534, Binomial[i/j + j - 1, 2] + j], {j, Divisors[i]}]]; A056534 (* Jean-François Alcover, Oct 05 2012, after Maple *)