cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056537 Mapping from the column-by-column reading to the half-antidiagonal reading of the triangular tables. Inverse of A056536.

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 5, 8, 12, 16, 7, 11, 15, 20, 25, 10, 14, 19, 24, 30, 36, 13, 18, 23, 29, 35, 42, 49, 17, 22, 28, 34, 41, 48, 56, 64, 21, 27, 33, 40, 47, 55, 63, 72, 81, 26, 32, 39, 46, 54, 62, 71, 80, 90, 100, 31, 38, 45, 53, 61, 70, 79, 89, 99, 110, 121, 37, 44, 52, 60, 69
Offset: 1

Views

Author

Antti Karttunen, Jun 20 2000

Keywords

Comments

Moves triangular numbers (A000217) to squares (A000290), i.e., A056537(A000217(i)) = A000290(i) for i >= 1.
As a square array, this is the dispersion of the complement of the squares; see A082152. - Clark Kimberling, Apr 05 2003

Examples

			As a square array, a northwest corner:
1 ... 2 ... 3 ... 5 ... 7 ... 10
4 ... 6 ... 8 ... 11 .. 14 .. 18
9 ... 12 .. 15 .. 19 .. 23 .. 28
16 .. 20 .. 24 .. 29 .. 34 .. 40
25 .. 30 .. 35 .. 41 .. 47 .. 54
36 .. 42 .. 48 .. 55 .. 62 .. 70
49 .. 56 .. 63 .. 71 .. 79 .. 88
64 .. 72 .. 80 .. 89 .. 98 .. 108
- _Clark Kimberling_, Aug 08 2013
		

Crossrefs

Cf. A185787 (dispersion of complement of triangular numbers).
Cf. A082152 (dispersion of complement of pentagonal numbers).

Programs

  • Maple
    # using Maple procedure nthmember given in A054426:
    [seq(nthmember(j, A056536), j=1..105)];
  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12; f[n_] := n+Floor[1/2+Sqrt[n]] (* complement of column 1 *); mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]; rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]]  (* A056537 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A056537 sequence *)
    (* Clark Kimberling, Jun 06 2011 *)

Formula

Triangle T(n, k), 1<=k<=n, read by rows, defined by: T(n, k) = 0 for nA002620(n-k+1) + k*n + k - n if n>=k. T(n, n) = n^2; T(n, 1) = 1 + A002620(n) = A033638(n). - Philippe Deléham, Feb 16 2004
Square: t(n,k) = (n-1)(n+k) + k^2/4 + (1/8)(7+(-1)^k). - Clark Kimberling, Aug 08 2013