A056537 Mapping from the column-by-column reading to the half-antidiagonal reading of the triangular tables. Inverse of A056536.
1, 2, 4, 3, 6, 9, 5, 8, 12, 16, 7, 11, 15, 20, 25, 10, 14, 19, 24, 30, 36, 13, 18, 23, 29, 35, 42, 49, 17, 22, 28, 34, 41, 48, 56, 64, 21, 27, 33, 40, 47, 55, 63, 72, 81, 26, 32, 39, 46, 54, 62, 71, 80, 90, 100, 31, 38, 45, 53, 61, 70, 79, 89, 99, 110, 121, 37, 44, 52, 60, 69
Offset: 1
Examples
As a square array, a northwest corner: 1 ... 2 ... 3 ... 5 ... 7 ... 10 4 ... 6 ... 8 ... 11 .. 14 .. 18 9 ... 12 .. 15 .. 19 .. 23 .. 28 16 .. 20 .. 24 .. 29 .. 34 .. 40 25 .. 30 .. 35 .. 41 .. 47 .. 54 36 .. 42 .. 48 .. 55 .. 62 .. 70 49 .. 56 .. 63 .. 71 .. 79 .. 88 64 .. 72 .. 80 .. 89 .. 98 .. 108 - _Clark Kimberling_, Aug 08 2013
Links
Crossrefs
Programs
-
Maple
# using Maple procedure nthmember given in A054426: [seq(nthmember(j, A056536), j=1..105)];
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; f[n_] := n+Floor[1/2+Sqrt[n]] (* complement of column 1 *); mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]; rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] (* A056537 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A056537 sequence *) (* Clark Kimberling, Jun 06 2011 *)
Formula
Triangle T(n, k), 1<=k<=n, read by rows, defined by: T(n, k) = 0 for nA002620(n-k+1) + k*n + k - n if n>=k. T(n, n) = n^2; T(n, 1) = 1 + A002620(n) = A033638(n). - Philippe Deléham, Feb 16 2004
Square: t(n,k) = (n-1)(n+k) + k^2/4 + (1/8)(7+(-1)^k). - Clark Kimberling, Aug 08 2013
Comments