cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056595 Number of nonsquare divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 6, 1, 3, 2, 4, 1, 7, 1, 3, 3, 3, 3, 5, 1, 3, 3, 6, 1, 7, 1, 4, 4, 3, 1, 7, 1, 4, 3, 4, 1, 6, 3, 6, 3, 3, 1, 10, 1, 3, 4, 3, 3, 7, 1, 4, 3, 7, 1, 8, 1, 3, 4, 4, 3, 7, 1, 7, 2, 3, 1, 10, 3, 3, 3, 6, 1, 10, 3, 4, 3, 3, 3, 9, 1, 4, 4, 5, 1, 7, 1
Offset: 1

Views

Author

Labos Elemer, Jul 21 2000

Keywords

Comments

a(A000430(n))=1; a(A030078(n))=2; a(A030514(n))=2; a(A006881(n))=3; a(A050997(n))=3; a(A030516(n))=3; a(A054753(n))=4; a(A000290(n))=A055205(n). - Reinhard Zumkeller, Aug 15 2011

Examples

			a(36)=5 because the set of divisors of 36 has tau(36)=nine elements, {1, 2, 3, 4, 6, 9, 12, 18, 36}, five of which, that is {2, 3, 6, 12, 18}, are not perfect squares.
		

Crossrefs

See A194095 and A194096 for record values and where they occur.

Programs

Formula

a(n) = A000005(n) - A046951(n) = tau(n) - tau(A000188(n)).
Sum_{k=1..n} a(k) ~ n*log(n) + (2*gamma - zeta(2) - 1)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 01 2023