cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056637 a(n) is the least prime of class n-, according to the Erdős-Selfridge classification of primes.

Original entry on oeis.org

2, 11, 23, 47, 283, 719, 1439, 2879, 34549, 138197, 1266767, 14920303, 36449279, 377982107, 1432349099, 22111003847, 110874748763
Offset: 1

Views

Author

Robert G. Wilson v, Jan 31 2001

Keywords

Comments

A prime p is in class 1- if p-1 has no prime factor larger than 3. If p-1 has other prime factors, p is in class (c+1)-, where c- is the largest class of its prime factors. See also A005109.
1432349099 < a(16) <= 25782283783.
a(18) <= 619108107719, a(19) <= 19811459447009, a(20) <= 152772264735359. These upper limits can be found by generating class (n+1)- primes from a list of n- class primes; if the latter is sufficiently complete, one can deduce that there is no smaller (n+1)- prime. - M. F. Hasler, Apr 05 2007

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; NextPrime[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; a = Table[0, {15}]; a[[1]] = 2; k = 5; Do[c = ClassMinusNbr[ k]; If[ a[[c]] == 0, a[[c]] = k]; k = NextPrime[k], {n, 3, 7223000}]; a

Formula

a(n+1) >= 2*a(n)+1, since a(n+1)-1 is even and must have a factor of class n- which is odd (n>1) and >= a(n). a(n+1) <= min { p = 2*k*a(n)+1 | k=1,2,3... such that p is prime }, since a(n) is a prime of class n-. - M. F. Hasler, Apr 05 2007

Extensions

Extended by Robert G. Wilson v, Mar 20 2003
More terms from Don Reble, Apr 11 2003
a(16) and a(17) from M. F. Hasler, Apr 21 2007