cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A056648 a(n) = A034444(A056647(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 4, 2, 4, 2, 2, 4, 2, 2, 1, 2, 2, 4, 4, 2, 2, 4, 2, 1, 2, 1, 2, 4, 4, 8, 8, 4, 4, 2, 2, 4, 2, 1, 1, 2, 1, 2, 2, 2, 4, 4, 2, 4, 2, 4, 4, 2, 1, 2, 2, 1, 4, 2, 4, 8, 2, 4, 8, 4, 2, 1, 2, 4, 8, 4, 2, 4, 4, 8, 4, 4, 8, 16, 8, 4, 4, 2, 1, 2, 2, 1
Offset: 1

Views

Author

Labos Elemer, Aug 09 2000

Keywords

Comments

Previous name, "Number of unitary square divisors of central binomial coefficient", was incorrect. See A376555 for the correct sequence with this name. - Amiram Eldar, Sep 28 2024

Examples

			a(28) = A034444(A056647(28)) = A034444(25) = 2.
		

Crossrefs

Programs

  • Mathematica
    A008833[n_] := First[Select[Reverse[Divisors[n]], IntegerQ[Sqrt[#]] &, 1]]; A055229[n_] := With[{sf = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n])}, GCD[sf, n/sf]]; Table[2^(PrimeNu[ Sqrt[A008833[Binomial[n, Floor[n/2]]]]/A055229[Binomial[n, Floor[n/2]]]]), {n, 1, 25}] (* G. C. Greubel, May 20 2017 *)

Formula

a(n) = 2^r, where r = A001221(A000188(A001405(n))/A055229(A001405(n))).

Extensions

Incorrect name replaced with a formula by Amiram Eldar, Sep 28 2024

A056649 a(n) = A056061(n) - A034444(A056647(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 4, 6, 2, 2, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 6, 8, 0, 0, 0, 4, 4, 6, 2, 2, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 4, 4, 0, 0, 4, 8, 2, 3, 6, 8, 4, 8, 2, 2, 4, 4, 8, 8, 0, 0, 0, 4, 2, 4, 3, 4, 2, 3, 4
Offset: 1

Views

Author

Labos Elemer, Aug 09 2000

Keywords

Comments

Previous name, "Number of non-unitary square divisors of central binomial coefficient", was incorrect. See A376556 for the correct sequence with this name. - Amiram Eldar, Sep 28 2024

Examples

			a(28) = A056061(28) - A034444(A056647(28)) = A056061(28) - A034444(25) = 8 - 2 = 6.
		

Crossrefs

Programs

  • Mathematica
    A056061[n_] := Count[Divisors@Binomial[n, Floor[n/2]], d_ /; IntegerQ@Sqrt@d]; A008833[n_] := First[Select[Reverse[Divisors[n]], IntegerQ[Sqrt[#]] &, 1]]; A055229[n_] := With[{sf = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n])}, GCD[sf, n/sf]];
    Table[A056061[n] - 2^(PrimeNu[Sqrt[A008833[Binomial[n, Floor[n/2]]]]/ A055229[Binomial[n, Floor[n/2]]]]), {n, 1, 15}] (* G. C. Greubel, May 20 2017 *)

Formula

a(n) = A056061(n) - 2^r, where r = A001221(A000188(A001405(n))/A055229(A001405(n))).

Extensions

Incorrect name replaced with a formula by Amiram Eldar, Sep 28 2024
Showing 1-2 of 2 results.