cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056652 Integers > 1 whose prime divisors are all Mersenne primes (i.e., of the form (2^p - 1)).

Original entry on oeis.org

3, 7, 9, 21, 27, 31, 49, 63, 81, 93, 127, 147, 189, 217, 243, 279, 343, 381, 441, 567, 651, 729, 837, 889, 961, 1029, 1143, 1323, 1519, 1701, 1953, 2187, 2401, 2511, 2667, 2883, 3087, 3429, 3937, 3969, 4557, 5103, 5859, 6223, 6561, 6727, 7203, 7533, 8001, 8191, 8649, 9261
Offset: 1

Views

Author

Leroy Quet, Aug 09 2000

Keywords

Examples

			63 is included because the prime factorization of 63 is 3^2 * 7 = (2^2 -1)^2 *(2^3 -1).
		

Crossrefs

Programs

  • Maple
    isA000668 := proc(n)
        if n in [   3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727] then
            true;
        else
            false;
        end if;
    end proc:
    isA056652 := proc(n)
        local p;
        for p in numtheory[factorset](n) do
            if not isA000668(p) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    for n from 2 to 1000 do
        if isA056652(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Feb 19 2017
  • Mathematica
    Block[{nn = 10^4, s}, s = TakeWhile[Select[2^Prime@ Range@ 8 - 1, PrimeQ], # <= nn &]; Select[Range@ nn, AllTrue[FactorInteger[#][[All, 1]], MemberQ[s, #] &] &]] (* Michael De Vlieger, Sep 03 2017 *)
  • PARI
    isok(n) = {if (n==1, return (0)); my(f = factor(n)); for (k=1, #f~, if (! ((q=ispower(f[k, 1]+1,,&e)) && isprime(q) && (e==2)), return(0));); 1;} \\ Michel Marcus, Apr 25 2016

Formula

Sum_{n>=1} 1/a(n) = - 1 + Product_{p in A000668} p/(p-1) = 0.82292512097260346512... - Amiram Eldar, Sep 27 2020

Extensions

Offset corrected and more terms added by Michel Marcus, Apr 25 2016