A056673 Number of unitary and squarefree divisors of binomial(n, floor(n/2)). Also the number of divisors of the powerfree part of A001405(n), A056060(n).
1, 2, 2, 4, 4, 2, 4, 8, 4, 2, 16, 8, 8, 8, 8, 16, 32, 16, 32, 16, 32, 32, 64, 32, 16, 16, 8, 8, 32, 32, 64, 128, 128, 64, 256, 128, 128, 128, 512, 256, 512, 512, 512, 512, 64, 64, 256, 128, 128, 128, 128, 128, 256, 256, 2048, 2048, 4096, 4096, 2048, 2048, 2048, 2048
Offset: 1
Keywords
Examples
n = 14: binomial(15,7) = 3432 = 2*2*2*3*11*13, which has 32 divisors. Of those divisors, 16 are unitary: {1, 3, 8, 11, 13, 24, 33, 39, 88, 104, 143, 264, 312, 429, 1144, 3432}; 16 are squarefree: {1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 858}. Only 8 of the divisors belong to both classes: {1, 3, 11, 13, 33, 39, 143, 429}. Thus, a(14) = 8.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[With[{m = Binomial[n, Floor[n/2]]}, DivisorSum[m, 1 &, And[CoprimeQ[#, m/#], SquareFreeQ@ #] &]], {n, 62}] (* Michael De Vlieger, Sep 05 2017 *) f[p_, e_] := If[e == 1, 2, 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[ Binomial[n, Floor[n/2]]]); Array[a, 60] (* Amiram Eldar, Sep 06 2020 *)
-
PARI
a(n) = my(b=binomial(n, n\2)); sumdiv(b, d, issquarefree(d) && (gcd(d, b/d) == 1)); \\ Michel Marcus, Sep 05 2017