cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056739 Numbers k such that k | 10^k + 9^k + 8^k + 7^k + 6^k + 5^k + 4^k + 3^k + 2^k + 1^k.

Original entry on oeis.org

1, 5, 11, 25, 55, 121, 125, 275, 365, 605, 625, 925, 1331, 1375, 2365, 3025, 3125, 6655, 6875, 14641, 15125, 15625, 22625, 27565, 32125, 33275, 34375, 73205, 75625, 78125, 123365, 161051, 166375, 171875, 366025, 378125, 390625, 541717, 660605
Offset: 1

Views

Author

Robert G. Wilson v, Aug 25 2000

Keywords

Comments

Contains A003598. In general n=p^i * q^j => n | Sum_{k=1..2*p} k^n, where p and q=2*p+1 are prime (see Meyer ref).
All terms == 1 or 5 (mod 6). The only prime terms are 5 and 11. - Robert Israel, Jun 25 2025

Crossrefs

Programs

  • Maple
    filter:= n ->   10 &^n + 9 &^ n + 8 &^ n + 7 &^ n + 6&^ n + 5&^n + 4&^n + 3&^n + 2&^n + 1 mod n = 0:
    select(filter, [seq(seq(6*i + j, j=[1,5]),i=0..10^6)]); # Robert Israel, Jun 25 2025
  • Mathematica
    Do[ If[ Mod[ PowerMod[ 10, n, n ] + PowerMod[ 9, n, n ] + PowerMod[ 8, n, n ] + PowerMod[ 7, n, n ] + PowerMod[ 6, n, n ] + PowerMod[ 5, n, n ] + PowerMod[ 4, n, n ] + PowerMod[ 3, n, n ] + PowerMod[ 2, n, n ] + 1, n ] == 0, Print[ n ] ], {n, 1, 10^6} ]
    Select[Range[700000],Divisible[Total[Range[10]^#],#]&] (* Harvey P. Dale, Nov 24 2014 *)
    Select[Range[700000],Mod[Total[PowerMod[Range[10],#,#]],#]==0&] (* Harvey P. Dale, Feb 23 2023 *)