cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056741 Numbers k such that k | 5^k + 4^k + 3^k + 2^k + 1^k.

Original entry on oeis.org

1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 125, 135, 225, 243, 261, 295, 375, 405, 625, 675, 729, 925, 1125, 1215, 1875, 2025, 2187, 3125, 3375, 3645, 4077, 4833, 5139, 5625, 6075, 6345, 6561, 9375, 10125, 10935, 15625, 16875, 17895, 18125, 18225, 18495, 19683
Offset: 1

Views

Author

Robert G. Wilson v, Aug 25 2000

Keywords

Comments

All terms are odd. The only primes in the sequence are 3 and 5. - Robert Israel, Jun 25 2025

Crossrefs

Programs

  • Maple
    filter:= n ->   5&^n + 4&^n + 3&^n + 2&^n + 1 mod n = 0:
    select(filter, [seq(i,i=1..10^5,2)]); # Robert Israel, Jun 25 2025
  • Mathematica
    Do[ If[ Mod[ PowerMod[ 5, n, n ] + PowerMod[ 4, n, n ] + PowerMod[ 3, n, n ] + PowerMod[ 2, n, n ] + 1, n ] == 0, Print[ n ] ], {n, 1, 10^6} ]
    Select[Range[20000],Mod[Total[PowerMod[Range[0,5],#,#]],#]==0&] (* Harvey P. Dale, Oct 09 2021 *)