A056745 Numbers k such that k | 6^k + 5^k + 4^k + 3^k + 2^k + 1^k.
1, 3, 7, 9, 21, 27, 49, 63, 77, 81, 147, 189, 243, 297, 343, 369, 441, 567, 729, 903, 1029, 1323, 1617, 1631, 1701, 2009, 2037, 2043, 2187, 2401, 2597, 2709, 3087, 3969, 5103, 6237, 6321, 6561, 7203, 8001, 8127, 9261, 10209, 11907, 13203, 15309, 15477
Offset: 1
Keywords
Crossrefs
Cf. A001553.
Programs
-
Mathematica
Do[ If[ Mod[ PowerMod[ 6, n, n ] + PowerMod[ 5, n, n ] + PowerMod[ 4, n, n ] + PowerMod[ 3, n, n ] + PowerMod[ 2, n, n ] + 1, n ] == 0, Print[ n ] ], {n, 1, 10^6} ] Select[Range[16000],Divisible[Total[Range[6]^#],#]&] (* Harvey P. Dale, Jun 06 2013 *)