cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A067023 Sigma-crowded numbers: n such that d(n)/sigma(n) is larger than d(m)/sigma(m) for all m > n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 42, 48, 60, 72, 80, 84, 90, 96, 120, 126, 144, 168, 180, 210, 240, 252, 280, 288, 300, 360, 420, 432, 480, 504, 540, 560, 600, 630, 720, 840, 900, 1008, 1080, 1260
Offset: 1

Views

Author

Labos Elemer, Jan 09 2002

Keywords

Comments

Since d(m) < 2*sqrt(m) < 2*sigma(m), we need only test values of m < (2*sigma(n)/d(n))^2.

Crossrefs

Programs

  • Mathematica
    crowded[n_] := Module[{}, stop=(2/(dovern=DivisorSigma[0, n]/DivisorSigma[1, n]))^2; For[m=n+1, m=dovern, Return[False]]]; True]; Select[Range[1, 13000], crowded]

A374793 a(n) is the largest k such that tau(k)^n >= k.

Original entry on oeis.org

2, 1260, 27935107200, 29564884570506808579056000
Offset: 1

Views

Author

Jon E. Schoenfield, Jul 20 2024

Keywords

Comments

Let prime(j)# denote the product of the first j primes, A002110(j); then
a(1) = prime(1)# = 2,
a(2) = 6*prime(4)# = 1260,
a(3) = 2880*prime(8)# = 2.7935...*10^10,
a(4) = 907200*prime(16)# = 2.9564...*10^25,
a(5) >= 259459200*prime(30)# = 8.2015...*10^54,
a(6) >= 3238237626624000*prime(52)# = 3.4403...*10^111,
a(7) >= 248818180782850398720000*prime(91)# = 5.4351...*10^218.

Examples

			27935107200 = 2^7 * 3^3 * 5^2 * 7^1 * 11^1 * 13^1 * 17^1 * 19^1,
so tau(27935107200) = (7+1)*(3+1)*(2+1)*(1+1)*(1+1)*(1+1)*(1+1)*(1+1) = 8*4*3*2*2*2*2*2 = 3072; 3072^3 = 28991029248 > 27935107200, and there is no larger number k such that tau(k)^3 >= k, so a(3) = 27935107200.
		

Crossrefs

Showing 1-2 of 2 results.