A385375 Numbers k that can't be partitioned into tau(k) distinct parts.
2, 4, 6, 8, 12, 18, 20, 24, 30, 36, 48, 60, 72, 120
Offset: 1
Examples
6 is a term because there is no partition of 6 into tau(6) = 4 distinct parts.
Programs
-
Maple
with(NumberTheory): A385375:=proc(K) local k,l; l:=[]; for k from 1 to K do if tau(k)*(tau(k)+1)/2>k then l:=[op(l),k]; end if; end do; return op(l); end proc: A385375(1260);
-
Mathematica
s={};Do[t=DivisorSigma[0,k];If[NoneTrue[Length/@Union/@IntegerPartitions[k,{t}],#==t&],AppendTo[s,k]],{k,72}];s (* James C. McMahon, Jul 24 2025 *)
Comments