A056866 Orders of non-solvable groups, i.e., numbers that are not solvable numbers.
60, 120, 168, 180, 240, 300, 336, 360, 420, 480, 504, 540, 600, 660, 672, 720, 780, 840, 900, 960, 1008, 1020, 1080, 1092, 1140, 1176, 1200, 1260, 1320, 1344, 1380, 1440, 1500, 1512, 1560, 1620, 1680, 1740, 1800, 1848, 1860, 1920, 1980, 2016, 2040
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 2240 terms from T. D. Noe)
- R. Brauer, Investigation on groups of even order, I.
- R. Brauer, Investigation on groups of even order, II.
- P. Erdős, On the density of some sequences of integers, Bull. Amer. Math. Soc. 54 (1948), pp. 685-692. See p. 685.
- W. Feit and J. G. Thompson, A solvability criterion for finite groups and consequences, Proc. N. A. S. 48 (6) (1962) 968.
- J. Pakianathan and K. Shankar, Nilpotent numbers, Amer. Math. Monthly, 107, August-September 2000, 631-634.
- Cindy Tsang, Qin Chao, On the solvability of regular subgroups in the holomorph of a finite solvable group, arXiv:1901.10636 [math.GR], 2019.
- Index entries for sequences related to groups
Programs
-
Mathematica
ma[n_] := For[k = 1, True, k++, p = Prime[k]; m = 2^p*(2^(2*p) - 1); If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]; mb[n_] := For[k = 2, True, k++, p = Prime[k]; m = 3^p*((3^(2*p) - 1)/2); If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]; mc[n_] := For[k = 3, True, k++, p = Prime[k]; m = p*((p^2 - 1)/2); If[Mod[p^2 + 1, 5] == 0, If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]]; md[n_] := Mod[n, 2^4*3^3*13] == 0; me[n_] := For[k = 2, True, k++, p = Prime[k]; m = 2^(2*p)*(2^(2*p) + 1)*(2^p - 1); If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]; notSolvableQ[n_] := OddQ[n] || ma[n] || mb[n] || mc[n] || md[n] || me[n]; Select[ Range[3000], notSolvableQ] (* Jean-François Alcover, Jun 14 2012, from formula *)
-
PARI
is(n)={ if(n%5616==0,return(1)); forprime(p=2,valuation(n,2), if(n%(4^p-1)==0, return(1)) ); forprime(p=3,valuation(n,3), if(n%(9^p\2)==0, return(1)) ); forprime(p=3,valuation(n,2)\2, if(n%((4^p+1)*(2^p-1))==0, return(1)) ); my(f=factor(n)[,1]); for(i=1,#f, if(f[i]>3 && f[i]%5>1 && f[i]%5<4 && n%(f[i]^2\2)==0, return(1)) ); 0 }; \\ Charles R Greathouse IV, Sep 11 2012
Formula
A positive integer k is a non-solvable number if and only if it is a multiple of any of the following numbers: a) 2^p*(2^(2*p)-1), p any prime. b) 3^p*(3^(2*p)-1)/2, p odd prime. c) p*(p^2-1)/2, p prime greater than 3 such that p^2 + 1 == 0 (mod 5). d) 2^4*3^3*13. e) 2^(2*p)*(2^(2*p)+1)*(2^p-1), p odd prime.
Extensions
More terms from Des MacHale, Feb 19 2001
Further terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
Comments