A131932 Number of nonisomorphic nonsolvable groups of order A056866(n).
Keywords
Examples
a(1) = 1 because there is only 1 nonsolvable group of order 60: A_5 (alternating group of 5th degree). a(2) = 3 because there are 3 different nonsolvable groups of order 120.
Links
- O. L. Hoelder, Bildung zusammengesetzter Gruppen, Math. Ann., 46 (1895), 321-422; see p. 420.
Programs
-
GAP
NrUnsolvable := function(n) local i, count; count := 0; for i in [1..NumberSmallGroups(n)] do if not IsSolvableGroup(SmallGroup(n, i)) then count := count + 1; fi; od; return count; end; # Eric M. Schmidt, Apr 04 2013
-
GAP
LoadPackage("GrpConst"); NrUnsolvable := function(n) local i, j, num; num := 0; for i in DivisorsInt(n) do if i<>1 then for j in [1..NrPerfectGroups(i)] do num := num + Length(Remove(UpwardsExtensions(PerfectGroup(IsPermGroup, i, j), n/i))); od; fi; od; return num; end; # Eric M. Schmidt, Nov 14 2013
Comments