A037250
a(n) = n^2*(n^2 + 1)*(n-1).
Original entry on oeis.org
0, 0, 20, 180, 816, 2600, 6660, 14700, 29120, 53136, 90900, 147620, 229680, 344760, 501956, 711900, 986880, 1340960, 1790100, 2352276, 3047600, 3898440, 4929540, 6168140, 7644096, 9390000, 11441300
Offset: 0
- R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
-
[n^2*(n^2+1)*(n-1): n in [0..30]]; // Vincenzo Librandi, Sep 14 2011
-
seq(coeff(series(4*x^2*(x^3+9*x^2+15*x+5)/(x-1)^6, x, n+1),x,n), n = 0..30); # Georg Fischer, Feb 17 2021
-
Table[n^2 (n^2+1)(n-1),{n,0,30}] (* Harvey P. Dale, Jul 27 2019 *)
A064583
a(n) = n^4*(n^4+1)*(n^2-1).
Original entry on oeis.org
0, 0, 816, 53136, 986880, 9390000, 58831920, 276825696, 1057222656, 3444262560, 9900990000, 25724822640, 61490347776, 137047559376, 287786357040, 574098840000, 1095233372160, 2009042197056, 3559481173296, 6114129610320, 10214463840000, 16642143690480, 26505160063536
Offset: 0
- R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- Harry J. Smith, Table of n, a(n) for n=0,...,500
- Index entries for linear recurrences with constant coefficients, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1).
-
[n^4*(n^4+1)*(n^2-1): n in [0..25]]; // Vincenzo Librandi, Jun 20 2018
-
Table[n^4 (n^4+1)(n^2-1),{n,0,30}] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,0,816,53136,986880,9390000,58831920,276825696,1057222656,3444262560,9900990000},30] (* Harvey P. Dale, Aug 17 2015 *)
CoefficientList[Series[48 x^2 (17 + 920 x + 9318 x^2 + 27545 x^3 + 27545 x^4 + 9318 x^5 + 920 x^6 + 17 x^7)/(1 - x)^11, {x, 0, 33}], x] (* Vincenzo Librandi, Jun 20 2018 *)
-
a(n) = { n^4*(n^4 + 1)*(n^2 - 1) } \\ Harry J. Smith, Sep 18 2009
A257391
Numbers of the form 4^p*(4^p+1)*(2^p-1) with p an odd prime.
Original entry on oeis.org
29120, 32537600, 34093383680, 36011213418659840, 36888985097480437760, 38685331082014736871587840, 39614005699412557795646504960, 41538369916519054182462860998737920, 44601490313984496701256699111250939955118080, 45671926145323068271210017365594287580527984640
Offset: 1
-
Table[4^p (4^p+1)(2^p-1),{p,Prime[Range[2,20]]}] (* Harvey P. Dale, Jul 17 2024 *)
-
a(n)=my(p=prime(n+1)); 4^p*(4^p+1)*(2^p-1) \\ Charles R Greathouse IV, Apr 21 2015
-
[4^nth_prime(n)*(4^nth_prime(n)+1)*(2^nth_prime(n)-1) for n in range(2,12)]
Showing 1-3 of 3 results.
Comments