cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A037250 a(n) = n^2*(n^2 + 1)*(n-1).

Original entry on oeis.org

0, 0, 20, 180, 816, 2600, 6660, 14700, 29120, 53136, 90900, 147620, 229680, 344760, 501956, 711900, 986880, 1340960, 1790100, 2352276, 3047600, 3898440, 4929540, 6168140, 7644096, 9390000, 11441300
Offset: 0

Views

Author

Keywords

Comments

Conjecture: satisfies a linear recurrence having signature (6, -15, 20, -15, 6, -1). - Harvey P. Dale, Jul 27 2019
This conjecture is true since for any series a(n) = P(n) (P polynomial in n of degree d) there is an o.g.f. Q(x)/(1-x)^(d+1). - Georg Fischer, Feb 17 2021

References

  • R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.

Crossrefs

Programs

  • Magma
    [n^2*(n^2+1)*(n-1): n in [0..30]]; // Vincenzo Librandi, Sep 14 2011
  • Maple
    seq(coeff(series(4*x^2*(x^3+9*x^2+15*x+5)/(x-1)^6, x, n+1),x,n), n = 0..30); # Georg Fischer, Feb 17 2021
  • Mathematica
    Table[n^2 (n^2+1)(n-1),{n,0,30}] (* Harvey P. Dale, Jul 27 2019 *)

A064583 a(n) = n^4*(n^4+1)*(n^2-1).

Original entry on oeis.org

0, 0, 816, 53136, 986880, 9390000, 58831920, 276825696, 1057222656, 3444262560, 9900990000, 25724822640, 61490347776, 137047559376, 287786357040, 574098840000, 1095233372160, 2009042197056, 3559481173296, 6114129610320, 10214463840000, 16642143690480, 26505160063536
Offset: 0

Views

Author

N. J. A. Sloane, Oct 17 2001

Keywords

References

  • R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.

Crossrefs

Programs

  • Magma
    [n^4*(n^4+1)*(n^2-1): n in [0..25]]; // Vincenzo Librandi, Jun 20 2018
  • Mathematica
    Table[n^4 (n^4+1)(n^2-1),{n,0,30}] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,0,816,53136,986880,9390000,58831920,276825696,1057222656,3444262560,9900990000},30] (* Harvey P. Dale, Aug 17 2015 *)
    CoefficientList[Series[48 x^2 (17 + 920 x + 9318 x^2 + 27545 x^3 + 27545 x^4 + 9318 x^5 + 920 x^6 + 17 x^7)/(1 - x)^11, {x, 0, 33}], x] (* Vincenzo Librandi, Jun 20 2018 *)
  • PARI
    a(n) = { n^4*(n^4 + 1)*(n^2 - 1) } \\ Harry J. Smith, Sep 18 2009
    

Formula

a(0)=0, a(1)=0, a(2)=816, a(3)=53136, a(4)=986880, a(5)=9390000, a(6)=58831920, a(7)=276825696, a(8)=1057222656, a(9)=3444262560, a(10)=9900990000, a(n)= 11*a(n-1)- 55*a(n-2)+ 165*a(n-3)- 330*a(n-4)+ 462*a(n-5)- 462*a(n-6)+ 330*a(n-7)- 165*a(n-8)+ 55*a(n-9)- 11*a(n-10)+ a(n-11). - Harvey P. Dale, Aug 17 2015
G.f.: 48*x^2*(17 + 920*x + 9318*x^2 + 27545*x^3 + 27545*x^4 + 9318*x^5 + 920*x^6 + 17*x^7)/(1-x)^11. - Vincenzo Librandi, Jun 20 2018

A257391 Numbers of the form 4^p*(4^p+1)*(2^p-1) with p an odd prime.

Original entry on oeis.org

29120, 32537600, 34093383680, 36011213418659840, 36888985097480437760, 38685331082014736871587840, 39614005699412557795646504960, 41538369916519054182462860998737920, 44601490313984496701256699111250939955118080, 45671926145323068271210017365594287580527984640
Offset: 1

Views

Author

Danny Rorabaugh, Apr 21 2015

Keywords

Comments

5 divides (4^m+1) for odd m, so every term in this sequence is a multiple of 5 (A008587).
A064487(k) = 4^(2k+1)*(4^(2k+1)+1)*(2^(2k+1)-1), so this sequence is a subsequence of A064487.
Every non-solvable number (A056866) is divisible by 12 or 20. All non-solvable numbers not divisible by 12 (A008594) are divisible by a member of this sequence. In particular, every primitive non-solvable number (A257146) not divisible by 12 is in this sequence.
All terms are divisible by 320 and have at least 4 distinct prime factors. - Jianing Song, Apr 04 2022

References

Crossrefs

Subsequence of A008587, A008602, A056866, and A064487.

Programs

  • Mathematica
    Table[4^p (4^p+1)(2^p-1),{p,Prime[Range[2,20]]}] (* Harvey P. Dale, Jul 17 2024 *)
  • PARI
    a(n)=my(p=prime(n+1)); 4^p*(4^p+1)*(2^p-1) \\ Charles R Greathouse IV, Apr 21 2015
  • Sage
    [4^nth_prime(n)*(4^nth_prime(n)+1)*(2^nth_prime(n)-1) for n in range(2,12)]
    

Formula

a(n) = 4^p*(4^p+1)*(2^p-1) where p = A065091(n) = A000040(n+1).
Showing 1-3 of 3 results.