A001034
Orders of noncyclic simple groups (without repetition).
Original entry on oeis.org
60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828, 12180, 14880, 20160, 25308, 25920, 29120, 32736, 34440, 39732, 51888, 58800, 62400, 74412, 95040, 102660, 113460, 126000, 150348, 175560, 178920
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
- Dickson L.E. Linear groups, with an exposition of the Galois field theory (Teubner, 1901), p. 309.
- M. Hall, Jr., A search for simple groups of order less than one million, pp. 137-168 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. Farrokhi D. G., Table of n, a(n) for n = 1..10000
- C. Cato, The orders of the known simple groups as far as one trillion, Math. Comp., 31 (1977), 574-577.
- L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory (page images), Dover, NY, 1958, p. 309.
- M. Farrokhi D. G., A GAP function generating the smallest non-cyclic finite simple group order greater than a given number m.
- Walter Feit and J. G. Thompson, A solvability criterion for finite groups and some consequences, Proc. N. A. S. 48 (6) (1962) 968.
- M. Hall Jr., Simple groups of order less than one million, J. Alg. 20 (1) (1972) 98-102
- David A. Madore, More terms
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
- Index entries for sequences related to groups
- Index entries for "core" sequences
Cf.
A109379 (orders with repetition),
A119648 (orders that are repeated).
A119648
Orders for which there is more than one simple group.
Original entry on oeis.org
20160, 4585351680, 228501000000000, 65784756654489600, 273457218604953600, 54025731402499584000, 3669292720793456064000, 122796979335906113871360, 6973279267500000000000000, 34426017123500213280276480
Offset: 1
From Dushan Pagon (dushanpag(AT)gmail.com), Jun 27 2010: (Start)
a(1)=|A_8|=8!/2=20160,
a(2)=|C_3(3)|=4585351680,
a(3)=|C_3(5)|=228501000000000, and
a(4)=|C_4(3)|=65784756654489600. (End)
- See A001034 for references and other links.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites]. [From Dushan Pagon (dushanpag(AT)gmail.com), Jun 27 2010]
- C. Cato, The orders of the known simple groups as far as one trillion, Math. Comp., 31 (1977), 574-577. [From Dushan Pagon (dushanpag(AT)gmail.com), Jun 27 2010]
- L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory. See also. [From Dushan Pagon (dushanpag(AT)gmail.com), Jun 27 2010]
- W. Kimmerle et al., Composition Factors from the Group Ring and Artin's Theorem on Orders of Simple Groups, Proc. London Math. Soc., (3) 60 (1990), 89-122. [From Dushan Pagon (dushanpag(AT)gmail.com), Jun 27 2010]
- David A. Madore, Orders of non-Abelian simple groups
- Wikipedia, Classification of finite simple groups [From Dushan Pagon (dushanpag(AT)gmail.com), Jun 27 2010]
- Index entries for sequences related to groups
Cf.
A001034 (orders of simple groups without repetition),
A109379 (orders with repetition),
A137863 (orders of simple groups which are non-cyclic and non-alternating).
-
sp(n, q) 1/2 q^n^2.(q^(2.i) - 1, i, 1, n) [From Dushan Pagon (dushanpag(AT)gmail.com), Jun 27 2010] [This line contained some nonascii characters which were unreadable]
Extended up to the 10th term by Dushan Pagon (dushanpag(AT)gmail.com), Jun 27 2010
A137863
Orders of simple groups which are non-cyclic and non-alternating.
Original entry on oeis.org
168, 504, 660, 1092, 2448, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828, 12180, 14880, 20160, 25308, 25920, 29120, 32736, 34440, 39732, 51888, 58800, 62400, 74412, 95040, 102660, 113460, 126000, 150348, 175560, 178920, 194472, 246480, 262080
Offset: 1
From _Bernard Schott_, Apr 27 2020: (Start)
Two particular examples:
a(1) = 168 is the order of the smallest non-cyclic and non-alternating simple group, this Lie group is the projective special linear group PSL_2(7) that is isomorphic to the general linear group GL_3(2).
a(12) = 7920 is the order of the smallest sporadic group (A001228), the Mathieu group M_11. (End)
- L. E. Dickson, Linear groups, with an exposition of the Galois field theory (Teubner, 1901), p. 309.
Subsequence:
A001228 (sporadic groups).
Incorrect formula and programs removed by
R. J. Mathar, Apr 27 2020
A330583
The orders, with repetition, of the non-cyclic finite simple groups whose orders are 23-smooth.
Original entry on oeis.org
60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828, 20160, 20160, 25920, 29120, 58800, 62400, 95040, 126000, 175560, 181440, 262080, 443520, 604800, 979200, 1451520, 1814400
Offset: 1
This list contains the orders of all non-cyclic finite simple groups < 12180. However, 29|12180, which is the order of L2(29).
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
A330584
The orders, with repetition, of the non-cyclic finite simple groups that are subquotients of the automorphism groups of sublattices of the Leech lattice.
Original entry on oeis.org
60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 20160, 20160, 25920, 62400, 95040, 126000, 181440, 443520, 604800, 979200, 1451520, 1814400, 3265920, 4245696, 10200960
Offset: 1
All simple groups of order less than 9828 have crystallographic representations within sublattices of the Leech lattice. The smallest nontrivial crystallographic representation of L2(27), of order 9828, is 26-dimensional.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
- J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices, and Groups. Springer, 3rd ed., 1999.
A330585
The orders, with repetition, of the non-cyclic finite simple groups that are subquotients of the sporadic finite simple groups.
Original entry on oeis.org
60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 12180, 14880, 20160, 20160, 25920, 29120, 32736, 58800, 62400, 95040, 102660, 126000, 175560, 178920, 181440, 265680, 372000, 443520, 604800
Offset: 1
This list includes the orders of all non-cyclic simple groups of order less than 9828. L2(27), of order 9828, does not appear as a subquotient of any of the sporadic finite simple groups.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
Showing 1-6 of 6 results.
Comments