cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A000001 Number of groups of order n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2, 5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 13, 1, 2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 50, 1, 2, 3, 4, 1, 6, 1, 52, 15, 2, 1, 15, 1, 2, 1, 12, 1, 10, 1, 4, 2
Offset: 0

Views

Author

Keywords

Comments

Also, number of nonisomorphic subgroups of order n in symmetric group S_n. - Lekraj Beedassy, Dec 16 2004
Also, number of nonisomorphic primitives (antiderivatives) of the combinatorial species Lin[n-1], or X^{n-1}; see Rajan, Summary item (i). - Nicolae Boicu, Apr 29 2011
In (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), a(n) is called the "group number of n", denoted by gnu(n), and the first occurrence of k is called the "minimal order attaining k", denoted by moa(k) (see A046057). - Daniel Forgues, Feb 15 2017
It is conjectured in (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008) that the sequence n -> a(n) -> a(a(n)) = a^2(n) -> a(a(a(n))) = a^3(n) -> ... -> consists ultimately of 1s, where a(n), denoted by gnu(n), is called the "group number of n". - Muniru A Asiru, Nov 19 2017
MacHale (2020) shows that there are infinitely many values of n for which there are more groups than rings of that order (cf. A027623). He gives n = 36355 as an example. It would be nice to have enough values of n to create an OEIS entry for them. - N. J. A. Sloane, Jan 02 2021
I conjecture that a(i) * a(j) <= a(i*j) for all nonnegative integers i and j. - Jorge R. F. F. Lopes, Apr 21 2024

Examples

			Groups of orders 1 through 10 (C_n = cyclic, D_n = dihedral of order n, Q_8 = quaternion, S_n = symmetric):
1: C_1
2: C_2
3: C_3
4: C_4, C_2 X C_2
5: C_5
6: C_6, S_3=D_6
7: C_7
8: C_8, C_4 X C_2, C_2 X C_2 X C_2, D_8, Q_8
9: C_9, C_3 X C_3
10: C_10, D_10
		

References

  • S. R. Blackburn, P. M. Neumann, and G. Venkataraman, Enumeration of Finite Groups, Cambridge, 2007.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 302, #35.
  • J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 209.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 134.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 150.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley Publ. Co., Reading, MA, 1989, Section 6.6 'Fibonacci Numbers' pp. 281-283.
  • M. Hall, Jr. and J. K. Senior, The Groups of Order 2^n (n <= 6). Macmillan, NY, 1964.
  • D. Joyner, 'Adventures in Group Theory', Johns Hopkins Press. Pp. 169-172 has table of groups of orders < 26.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.24, p. 481.
  • M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128. Group theory (Singapore, 1987), 437-442, de Gruyter, Berlin-New York, 1989.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The main sequences concerned with group theory are A000001 (this one), A000679, A001034, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A000688, A060689, A051532.
A003277 gives n for which A000001(n) = 1, A063756 (partial sums).
A046057 gives first occurrence of each k.
A027623 gives the number of rings of order n.

Programs

  • GAP
    A000001 := Concatenation([0], List([1..500], n -> NumberSmallGroups(n))); # Muniru A Asiru, Oct 15 2017
  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n) : n in [1..1000] ]; // John Cannon, Dec 23 2006
    
  • Maple
    GroupTheory:-NumGroups(n); # with(GroupTheory); loads this command - N. J. A. Sloane, Dec 28 2017
  • Mathematica
    FiniteGroupCount[Range[100]] (* Harvey P. Dale, Jan 29 2013 *)
    a[ n_] := If[ n < 1, 0, FiniteGroupCount @ n]; (* Michael Somos, May 28 2014 *)

Formula

From Mitch Harris, Oct 25 2006: (Start)
For p, q, r primes:
a(p) = 1, a(p^2) = 2, a(p^3) = 5, a(p^4) = 14, if p = 2, otherwise 15.
a(p^5) = 61 + 2*p + 2*gcd(p-1,3) + gcd(p-1,4), p >= 5, a(2^5)=51, a(3^5)=67.
a(p^e) ~ p^((2/27)e^3 + O(e^(8/3))).
a(p*q) = 1 if gcd(p,q-1) = 1, 2 if gcd(p,q-1) = p. (p < q)
a(p*q^2) is one of the following:
---------------------------------------------------------------------------
| a(p*q^2) | p*q^2 of the form | Sequences (p*q^2) |
---------- ------------------------------------------ ---------------------
| (p+9)/2 | q == 1 (mod p), p odd | A350638 |
| 5 | p=3, q=2 => p*q^2 = 12 |Special case with A_4|
| 5 | p=2, q odd | A143928 |
| 5 | p == 1 (mod q^2) | A350115 |
| 4 | p == 1 (mod q), p > 3, p !== 1 (mod q^2) | A349495 |
| 3 | q == -1 (mod p), p and q odd | A350245 |
| 2 | q !== +-1 (mod p) and p !== 1 (mod q) | A350422 |
---------------------------------------------------------------------------
[Table from Bernard Schott, Jan 18 2022]
a(p*q*r) (p < q < r) is one of the following:
q == 1 (mod p) r == 1 (mod p) r == 1 (mod q) a(p*q*r)
-------------- -------------- -------------- --------
No No No 1
No No Yes 2
No Yes No 2
No Yes Yes 4
Yes No No 2
Yes No Yes 3
Yes Yes No p+2
Yes Yes Yes p+4
[table from Derek Holt].
(End)
a(n) = A000688(n) + A060689(n). - R. J. Mathar, Mar 14 2015

Extensions

More terms from Michael Somos
Typo in b-file description fixed by David Applegate, Sep 05 2009

A005180 Orders of simple groups.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 60, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 168, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Keywords

Comments

Officially the group of order 1 is not considered to be simple - see for example Rotman, Group Theory.

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • M. Hall, Jr., A search for simple groups of order less than one million, pp. 137-168 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000001, A001228. Union of {1}, A000040 and A001034.

Programs

  • Mathematica
    (* Recomputation from A001034. *)
    maxOrder = 7789;
    A001034 = Select[Cases[Import["https://oeis.org/A001034/b001034.txt", "Table"], {, }][[All, 2]], # <= maxOrder&];
    Union[{1}, Prime[Range[PrimePi[maxOrder]]], A001034] (* Jean-François Alcover, Aug 19 2019 *)

A001228 Orders of sporadic simple groups.

Original entry on oeis.org

7920, 95040, 175560, 443520, 604800, 10200960, 44352000, 50232960, 244823040, 898128000, 4030387200, 145926144000, 448345497600, 460815505920, 495766656000, 42305421312000, 64561751654400, 273030912000000, 51765179004000000, 90745943887872000, 4089470473293004800, 4157776806543360000, 86775571046077562880, 1255205709190661721292800, 4154781481226426191177580544000000, 808017424794512875886459904961710757005754368000000000
Offset: 1

Views

Author

Keywords

Comments

Numbers of divisors: A174601(n) = A000005(a(n)); squarefree kernels: A174848(n) = A007947(a(n)). - Reinhard Zumkeller, Apr 02 2010
By historical convention, the Tits group is often excluded from the list of sporadic simple groups. It could be inserted as a(7) = 17971200 giving this sequence 27 rather than 26 elements. - Charles R Greathouse IV, Jul 09 2020

Examples

			The first term is 7920 because the order of the sporadic group M_{11} is 7920, the smallest order of any sporadic group.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 296.
  • Martin Gardner, "The Last Recreations", 1997, chap 9, p. 153.

Crossrefs

Extensions

Entries checked by Pab Ter (pabrlos(AT)yahoo.com), May 29 2004

A056866 Orders of non-solvable groups, i.e., numbers that are not solvable numbers.

Original entry on oeis.org

60, 120, 168, 180, 240, 300, 336, 360, 420, 480, 504, 540, 600, 660, 672, 720, 780, 840, 900, 960, 1008, 1020, 1080, 1092, 1140, 1176, 1200, 1260, 1320, 1344, 1380, 1440, 1500, 1512, 1560, 1620, 1680, 1740, 1800, 1848, 1860, 1920, 1980, 2016, 2040
Offset: 1

Views

Author

N. J. A. Sloane, Sep 02 2000

Keywords

Comments

A number is solvable if every group of that order is solvable.
This comment is about the three sequences A001034, A060793, A056866: The Feit-Thompson theorem says that a finite group with odd order is solvable, hence all numbers in this sequence are even. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 08 2001 [Corrected by Isaac Saffold, Aug 09 2021]
Insoluble group orders can be derived from A001034 (simple non-cyclic orders): k is an insoluble order iff k is a multiple of a simple non-cyclic order. - Des MacHale
All terms are divisible by 4 and either 3 or 5. - Charles R Greathouse IV, Sep 11 2012
Subsequence of A056868 and hence of A060652. - Charles R Greathouse IV, Apr 16 2015, updated Sep 11 2015
The primitive elements are A257146. Since the sum of the reciprocals of the terms of that sequence converges, this sequence has a natural density and so a(n) ~ k*n for some k (see, e.g., Erdős 1948). - Charles R Greathouse IV, Apr 17 2015
From Jianing Song, Apr 04 2022: (Start)
Burnside's p^a*q^b theorem says that a finite group whose order has at most 2 distinct prime factors is solvable, hence all terms have at least 3 distinct prime factors.
Terms not divisible by 12 are divisible by 320 and have at least 4 distinct prime factors (cf. A257391). (End)

Crossrefs

Subsequence of A000977 and A056868.

Programs

  • Mathematica
    ma[n_] := For[k = 1, True, k++, p = Prime[k]; m = 2^p*(2^(2*p) - 1); If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]; mb[n_] := For[k = 2, True, k++, p = Prime[k]; m = 3^p*((3^(2*p) - 1)/2); If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]; mc[n_] := For[k = 3, True, k++, p = Prime[k]; m = p*((p^2 - 1)/2); If[Mod[p^2 + 1, 5] == 0, If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]]; md[n_] := Mod[n, 2^4*3^3*13] == 0; me[n_] := For[k = 2, True, k++, p = Prime[k]; m = 2^(2*p)*(2^(2*p) + 1)*(2^p - 1); If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]; notSolvableQ[n_] := OddQ[n] || ma[n] || mb[n] || mc[n] || md[n] || me[n]; Select[ Range[3000], notSolvableQ] (* Jean-François Alcover, Jun 14 2012, from formula *)
  • PARI
    is(n)={
        if(n%5616==0,return(1));
        forprime(p=2,valuation(n,2),
            if(n%(4^p-1)==0, return(1))
        );
        forprime(p=3,valuation(n,3),
            if(n%(9^p\2)==0, return(1))
        );
        forprime(p=3,valuation(n,2)\2,
            if(n%((4^p+1)*(2^p-1))==0, return(1))
        );
        my(f=factor(n)[,1]);
        for(i=1,#f,
            if(f[i]>3 && f[i]%5>1 && f[i]%5<4 && n%(f[i]^2\2)==0, return(1))
        );
        0
    }; \\ Charles R Greathouse IV, Sep 11 2012

Formula

A positive integer k is a non-solvable number if and only if it is a multiple of any of the following numbers: a) 2^p*(2^(2*p)-1), p any prime. b) 3^p*(3^(2*p)-1)/2, p odd prime. c) p*(p^2-1)/2, p prime greater than 3 such that p^2 + 1 == 0 (mod 5). d) 2^4*3^3*13. e) 2^(2*p)*(2^(2*p)+1)*(2^p-1), p odd prime.

Extensions

More terms from Des MacHale, Feb 19 2001
Further terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A060793 Orders of finite perfect groups (groups such that G = G' where G' is the commutator subgroup of G).

Original entry on oeis.org

1, 60, 120, 168, 336, 360, 504, 660, 720, 960, 1080, 1092, 1320, 1344, 1920, 2160, 2184, 2448, 2520, 2688, 3000, 3420, 3600, 3840, 4080, 4860, 4896, 5040, 5376, 5616, 5760, 6048, 6072, 6840, 7200, 7500, 7560, 7680, 7800, 7920, 9720, 9828, 10080, 10752
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 26 2001

Keywords

Comments

This comment is about the three sequences A001034, A060793, A056866: The Feit-Thompson theorem says that a finite group with odd order is solvable, hence all numbers in this sequence are even. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 08 2001 [Corrected by Isaac Saffold, Aug 09 2021]
Since a non-cyclic simple group is perfect this sequence contains A001034 and since a perfect group is non-solvable this sequence is a subsequence of A056866 (apart from the initial term).

Examples

			A_{5} is perfect since it is equivalent to A_{5}'.
		

References

  • D. Holt and W. Plesken, Perfect Groups, Oxford University Press, 1989.

Crossrefs

Programs

A109379 Orders of non-cyclic simple groups (with repetition).

Original entry on oeis.org

60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828, 12180, 14880, 20160, 20160, 25308, 25920, 29120, 32736, 34440, 39732, 51888, 58800, 62400, 74412, 95040, 102660, 113460, 126000, 150348
Offset: 1

Views

Author

N. J. A. Sloane, Jul 29 2006

Keywords

Comments

The first repetition is at 20160 (= 8!/2) and the first proof that there exist two nonisomorphic simple groups of this order was given by the American mathematician Ida May Schottenfels (1869-1942). - David Callan, Nov 21 2006
By the Feit-Thompson theorem, all terms in this sequence are even. - Robin Jones, Dec 25 2023

References

  • See A001034 for references and other links.

Crossrefs

Cf. A001034 (orders without repetition), A119648 (orders that are repeated).

A119630 Orders of non-Abelian simple groups of rank at least two.

Original entry on oeis.org

60, 168, 360, 2520, 5616, 6048, 7920, 20160, 20160, 25920, 29120, 62400, 95040, 126000, 175560, 181440, 372000, 443520, 604800, 979200, 1451520, 1814400, 1876896, 3265920, 4245696, 4680000, 5515776, 5663616, 6065280, 9999360
Offset: 1

Views

Author

N. J. A. Sloane, Jun 10 2006

Keywords

Comments

This omits (from A001034) only the non-Abelian simple groups of Lie type of rank 1, i.e. the linear groups L(2,q).

Crossrefs

Subsequence of A005180.
Cf. A001034.

A131932 Number of nonisomorphic nonsolvable groups of order A056866(n).

Original entry on oeis.org

1, 3, 1, 1, 8, 1, 3, 6, 1, 26, 2, 2, 5, 2, 8, 23, 1, 6, 1, 107, 6, 1, 14, 1, 1, 1, 19, 2, 8, 28, 1, 93, 2, 4, 5, 5, 22, 1, 10, 1, 1, 588, 2, 20, 5, 1, 64, 4, 1, 5, 2, 5, 81, 1, 1, 18, 1, 25, 112, 2, 5, 1, 1
Offset: 1

Views

Author

Artur Jasinski, Jul 30 2007, Oct 20 2007

Keywords

Examples

			a(1) = 1 because there is only 1 nonsolvable group of order 60: A_5 (alternating group of 5th degree).
a(2) = 3 because there are 3 different nonsolvable groups of order 120.
		

Crossrefs

Programs

  • GAP
    NrUnsolvable := function(n) local i, count; count := 0; for i in [1..NumberSmallGroups(n)] do if not IsSolvableGroup(SmallGroup(n, i)) then count := count + 1; fi; od; return count; end; # Eric M. Schmidt, Apr 04 2013
    
  • GAP
    LoadPackage("GrpConst"); NrUnsolvable := function(n) local i, j, num; num := 0; for i in DivisorsInt(n) do if i<>1 then for j in [1..NrPerfectGroups(i)] do num := num + Length(Remove(UpwardsExtensions(PerfectGroup(IsPermGroup, i, j), n/i))); od; fi; od; return num; end; # Eric M. Schmidt, Nov 14 2013

Extensions

Edited by N. J. A. Sloane, Oct 08 2007
More terms from Eric M. Schmidt, Apr 04 2013
a(44)-a(63) from Eric M. Schmidt, Nov 14 2013

A001051 Number of subgroups of order n in orthogonal group O(3).

Original entry on oeis.org

1, 3, 1, 5, 1, 5, 1, 7, 1, 5, 1, 8, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 10, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 8, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 8, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 8
Offset: 1

Views

Author

Keywords

Crossrefs

The main sequences concerned with group theory are A000001, A000679, A001034, A001051, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A051881.

Programs

  • Mathematica
    a[2] = 3; a[4] = 5; a[12] = 8; a[24] = 10; a[48] = a[60] = a[120] = 8; a[n_] := Switch[Mod[n, 4], 0, 7, 1, 1, 2, 5, 3, 1]; Table[a[n], {n, 1, 96}] (* Jean-François Alcover, Oct 15 2013 *)
  • PARI
    A001051(n) = if((12==n)||(48==n)||(60==n)||(120==n),8,if(24==n,10,if((4==n)||(2==n),1+n,[1,5,1,7][1+((n-1)%4)]))); \\ Antti Karttunen, Jan 15 2019

Formula

Has period 1 5 1 7 except that a(2) = 3, a(4) = 5, a(12) = 8, a(24) = 10, a(48) = a(60) = a(120) = 8.

Extensions

Data section extended up to a(120) by Antti Karttunen, Jan 15 2019

A051881 Number of subgroups of order n in special orthogonal group SO(3).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Keywords

Examples

			The groups are "nn", of order n; "22n", of order 2n; "332", "432", "532" of orders 12,24,60.
		

Crossrefs

The main sequences concerned with group theory are A000001, A000679, A001034, A001051, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A051881.

Programs

  • Mathematica
    a[2] = 1; a[12|24|60] = 3; a[n_] := 2-Mod[n, 2]; Array[a, 105] (* Jean-François Alcover, Nov 12 2015 *)
  • PARI
    a(n)=if(n==2||n==12||n==24||n==60, if(n>2,3,1), if(n%2,1,2)) \\ Charles R Greathouse IV, Nov 10 2015
    
  • Python
    def a(n):
        if n == 2:
            return 1
        elif n in {12, 24, 60}:
            return 3
        else:
            return 2 - n % 2 # Paul Muljadi, Oct 21 2024

Formula

Has period 1, 2 except for a(2) = 1, a(12) = a(24) = a(60) = 3.

Extensions

More terms from James Sellers and David W. Wilson, Dec 16 1999
Showing 1-10 of 25 results. Next