cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A002865 Number of partitions of n that do not contain 1 as a part.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137, 165, 210, 253, 320, 383, 478, 574, 708, 847, 1039, 1238, 1507, 1794, 2167, 2573, 3094, 3660, 4378, 5170, 6153, 7245, 8591, 10087, 11914, 13959, 16424, 19196, 22519, 26252, 30701
Offset: 0

Views

Author

Keywords

Comments

Also the number of partitions of n-1, n >= 2, such that the least part occurs exactly once. See A096373, A097091, A097092, A097093. - Robert G. Wilson v, Jul 24 2004 [Corrected by Wolfdieter Lang, Feb 18 2009]
Number of partitions of n+1 where the number of parts is itself a part. Take a partition of n (with k parts) which does not contain 1, remove 1 from each part and add a new part of size k+1. - Franklin T. Adams-Watters, May 01 2006
Number of partitions where the largest part occurs at least twice. - Joerg Arndt, Apr 17 2011
Row sums of triangle A147768. - Gary W. Adamson, Nov 11 2008
From Lewis Mammel (l_mammel(AT)att.net), Oct 06 2009: (Start)
a(n) is the number of sets of n disjoint pairs of 2n things, called a pairing, disjoint with a given pairing (A053871), that are unique under permutations preserving the given pairing.
Can be seen immediately from a graphical representation which must decompose into even numbered cycles of 4 or more things, as connected by pairs alternating between the pairings. Each thing is in a single cycle, so this is a partition of 2n into even parts greater than 2, equivalent to a partition of n into parts greater than 1. (End)
Convolution product (1, 1, 2, 2, 4, 4, ...) * (1, 2, 3, ...) = A058682 starting (1, 3, 7, 13, 23, 37, ...); with row sums of triangle A171239 = A058682. - Gary W. Adamson, Dec 05 2009
Also the number of 2-regular multigraphs with loops forbidden. - Jason Kimberley, Jan 05 2011
Number of appearances of the multiplicity n, n-1, ..., n-k in all partitions of n, for k < n/2. (Only populated by multiplicities of large numbers of 1's.) - William Keith, Nov 20 2011
Also the number of equivalence classes of n X n binary matrices with exactly 2 1's in each row and column, up to permutations of rows and columns (cf. A133687). - N. J. A. Sloane, Sep 16 2013
Starting at a(2) this sequence gives the number of vertices on a nim tree created in the game of edge removal for a path P_{n} where n is the number of vertices on the path. This is the number of nonisomorphic graphs that can result from the path when the game of edge removal is played. - Lyndsey Wong, Jul 09 2016
The number of different ways to climb a staircase taking at least two stairs at a time. - Mohammad K. Azarian, Nov 20 2016
Let 1,0,1,1,1,... (offset 0) count unlabeled, connected, loopless 1-regular digraphs. This here is the Euler transform of that sequence, counting unlabeled loopless 1-regular digraphs. A145574 is the associated multiset transformation. A000166 are the labeled loopless 1-regular digraphs. - R. J. Mathar, Mar 25 2019
For n > 1, also the number of partitions with no part greater than the number of ones. - George Beck, May 09 2019 [See A187219 which is the correct sequence for this interpretation for n >= 1. - Spencer Miller, Jan 30 2023]
From Gus Wiseman, May 19 2019: (Start)
Conjecture: Also the number of integer partitions of n - 1 that have a consecutive subsequence summing to each positive integer from 1 to n - 1. For example, (32211) is such a partition because we have consecutive subsequences:
1: (1)
2: (2)
3: (3) or (21)
4: (22) or (211)
5: (32) or (221)
6: (2211)
7: (322)
8: (3221)
9: (32211)
(End)
There is a sufficient and necessary condition to characterize the partitions defined by Gus Wiseman. It is that the largest part must be less than or equal to the number of ones plus one. Hence, the number of partitions of n with no part greater than the number of ones is the same as the number of partitions of n-1 that have a consecutive subsequence summing to each integer from 1 to n-1. Gus Wiseman's conjecture can be proved bijectively. - Andrew Yezhou Wang, Dec 14 2019
From Peter Bala, Dec 01 2024: (Start)
Let P(2, n) denote the set of partitions of n into parts k > 1. Then A000041(n) = - Sum_{parts k in all partitions in P(2, n+2)} mu(k). For example, with n = 5, there are 4 partitions of n + 2 = 7 into parts greater than 1, namely, 7, 5 + 2, 4 + 3, 3 + 2 + 2, and mu(7) + (mu(5) + mu(2)) + (mu(4 ) + mu(3)) + (mu(3) + mu(2) + mu(2)) = -7 = - A000041(5). (End)

Examples

			a(6) = 4 from 6 = 4+2 = 3+3 = 2+2+2.
G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 7*x^8 + 8*x^9 + ...
From _Gus Wiseman_, May 19 2019: (Start)
The a(2) = 1 through a(9) = 8 partitions not containing 1 are the following. The Heinz numbers of these partitions are given by A005408.
  (2)  (3)  (4)   (5)   (6)    (7)    (8)     (9)
            (22)  (32)  (33)   (43)   (44)    (54)
                        (42)   (52)   (53)    (63)
                        (222)  (322)  (62)    (72)
                                      (332)   (333)
                                      (422)   (432)
                                      (2222)  (522)
                                              (3222)
The a(2) = 1 through a(9) = 8 partitions of n - 1 whose least part appears exactly once are the following. The Heinz numbers of these partitions are given by A247180.
  (1)  (2)  (3)   (4)   (5)    (6)    (7)     (8)
            (21)  (31)  (32)   (42)   (43)    (53)
                        (41)   (51)   (52)    (62)
                        (221)  (321)  (61)    (71)
                                      (331)   (332)
                                      (421)   (431)
                                      (2221)  (521)
                                              (3221)
The a(2) = 1 through a(9) = 8 partitions of n + 1 where the number of parts is itself a part are the following. The Heinz numbers of these partitions are given by A325761.
  (21)  (22)  (32)   (42)   (52)    (62)    (72)     (82)
              (311)  (321)  (322)   (332)   (333)    (433)
                            (331)   (431)   (432)    (532)
                            (4111)  (4211)  (531)    (631)
                                            (4221)   (4222)
                                            (4311)   (4321)
                                            (51111)  (4411)
                                                     (52111)
The a(2) = 1 through a(8) = 7 partitions of n whose greatest part appears at least twice are the following. The Heinz numbers of these partitions are given by A070003.
  (11)  (111)  (22)    (221)    (33)      (331)      (44)
               (1111)  (11111)  (222)     (2221)     (332)
                                (2211)    (22111)    (2222)
                                (111111)  (1111111)  (3311)
                                                     (22211)
                                                     (221111)
                                                     (11111111)
Nonisomorphic representatives of the a(2) = 1 through a(6) = 4 2-regular multigraphs with n edges and n vertices are the following.
  {12,12}  {12,13,23}  {12,12,34,34}  {12,12,34,35,45}  {12,12,34,34,56,56}
                       {12,13,24,34}  {12,13,24,35,45}  {12,12,34,35,46,56}
                                                        {12,13,23,45,46,56}
                                                        {12,13,24,35,46,56}
The a(2) = 1 through a(9) = 8 partitions of n with no part greater than the number of ones are the following. The Heinz numbers of these partitions are given by A325762.
  (11)  (111)  (211)   (2111)   (2211)    (22111)    (22211)     (33111)
               (1111)  (11111)  (3111)    (31111)    (32111)     (222111)
                                (21111)   (211111)   (41111)     (321111)
                                (111111)  (1111111)  (221111)    (411111)
                                                     (311111)    (2211111)
                                                     (2111111)   (3111111)
                                                     (11111111)  (21111111)
                                                                 (111111111)
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 836.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115, p*(n).
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. G. Tait, Scientific Papers, Cambridge Univ. Press, Vol. 1, 1898, Vol. 2, 1900, see Vol. 1, p. 334.

Crossrefs

First differences of partition numbers A000041. Cf. A053445, A072380, A081094, A081095, A232697.
Pairwise sums seem to be in A027336.
Essentially the same as A085811.
A column of A090824 and of A133687 and of A292508 and of A292622. Cf. A229161.
2-regular not necessarily connected graphs: A008483 (simple graphs), A000041 (multigraphs with loops allowed), this sequence (multigraphs with loops forbidden), A027336 (graphs with loops allowed but no multiple edges). - Jason Kimberley, Jan 05 2011
See also A098743 (parts that do not divide n).
Numbers n such that in the edge-delete game on the path P_{n} the first player does not have a winning strategy: A274161. - Lyndsey Wong, Jul 09 2016
Row sums of characteristic array A145573.
Number of partitions of n into parts >= m: A008483 (m = 3), A008484 (m = 4), A185325 - A185329 (m = 5 through 9).

Programs

  • GAP
    Concatenation([1],List([1..41],n->NrPartitions(n)-NrPartitions(n-1))); # Muniru A Asiru, Aug 20 2018
    
  • Magma
    A41 := func; [A41(n)-A41(n-1):n in [0..50]]; // Jason Kimberley, Jan 05 2011
    
  • Maple
    with(combstruct): ZL1:=[S, {S=Set(Cycle(Z,card>1))}, unlabeled]: seq(count(ZL1,size=n), n=0..50);  # Zerinvary Lajos, Sep 24 2007
    G:= {P=Set (Set (Atom, card>1))}: combstruct[gfsolve](G, unlabeled, x): seq  (combstruct[count] ([P, G, unlabeled], size=i), i=0..50);  # Zerinvary Lajos, Dec 16 2007
    with(combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, unlabeled]; end: A:=a(2):seq(count(A, size=n), n=0..50);  # Zerinvary Lajos, Jun 11 2008
    # alternative Maple program:
    A002865:= proc(n) option remember; `if`(n=0, 1, add(
          (numtheory[sigma](j)-1)*A002865(n-j), j=1..n)/n)
        end:
    seq(A002865(n), n=0..60);  # Alois P. Heinz, Sep 17 2017
  • Mathematica
    Table[ PartitionsP[n + 1] - PartitionsP[n], {n, -1, 50}] (* Robert G. Wilson v, Jul 24 2004 *)
    f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 2], {n, 50}] (* Robert G. Wilson v *)
    Table[SeriesCoefficient[Exp[Sum[x^(2*k)/(k*(1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Aug 18 2018 *)
    CoefficientList[Series[1/QPochhammer[x^2, x], {x,0,50}], x] (* G. C. Greubel, Nov 03 2019 *)
    Table[Count[IntegerPartitions[n],?(FreeQ[#,1]&)],{n,0,50}] (* _Harvey P. Dale, Feb 12 2023 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 - x) / eta(x + x * O(x^n)), n))};
    
  • PARI
    a(n)=if(n,numbpart(n)-numbpart(n-1),1) \\ Charles R Greathouse IV, Nov 26 2012
    
  • Python
    from sympy import npartitions
    def A002865(n): return npartitions(n)-npartitions(n-1) if n else 1 # Chai Wah Wu, Mar 30 2023
  • SageMath
    def A002865_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+2)) for m in (0..60)) ).list()
    A002865_list(50) # G. C. Greubel, Nov 03 2019
    

Formula

G.f.: Product_{m>1} 1/(1-x^m).
a(0)=1, a(n) = p(n) - p(n-1), n >= 1, with the partition numbers p(n) := A000041(n).
a(n) = A085811(n+3). - James Sellers, Dec 06 2005 [Corrected by Gionata Neri, Jun 14 2015]
a(n) = A116449(n) + A116450(n). - Reinhard Zumkeller, Feb 16 2006
a(n) = Sum_{k=2..floor((n+2)/2)} A008284(n-k+1,k-1) for n > 0. - Reinhard Zumkeller, Nov 04 2007
G.f.: 1 + Sum_{n>=2} x^n / Product_{k>=n} (1 - x^k). - Joerg Arndt, Apr 13 2011
G.f.: Sum_{n>=0} x^(2*n) / Product_{k=1..n} (1 - x^k). - Joerg Arndt, Apr 17 2011
a(n) = A090824(n,1) for n > 0. - Reinhard Zumkeller, Oct 10 2012
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + 13*Pi/(24*sqrt(6)))/sqrt(n) + (217*Pi^2/6912 + 9/(2*Pi^2) + 13/8)/n). - Vaclav Kotesovec, Feb 26 2015, extended Nov 04 2016
G.f.: exp(Sum_{k>=1} (sigma_1(k) - 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
a(0) = 1, a(n) = A232697(n) - 1. - George Beck, May 09 2019
From Peter Bala, Feb 19 2021: (Start)
G.f.: A(q) = Sum_{n >= 0} q^(n^2)/( (1 - q)*Product_{k = 2..n} (1 - q^k)^2 ).
More generally, A(q) = Sum_{n >= 0} q^(n*(n+r))/( (1 - q) * Product_{k = 2..n} (1 - q^k)^2 * Product_{i = 1..r} (1 - q^(n+i)) ) for r = 0,1,2,.... (End)
G.f.: 1 + Sum_{n >= 1} x^(n+1)/Product_{k = 1..n-1} 1 - x^(k+2). - Peter Bala, Dec 01 2024

A004001 Hofstadter-Conway $10000 sequence: a(n) = a(a(n-1)) + a(n-a(n-1)) with a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 10, 11, 12, 12, 13, 14, 14, 15, 15, 15, 16, 16, 16, 16, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 26, 27, 27, 27, 28, 29, 29, 30, 30, 30, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 33, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42
Offset: 1

Views

Author

Keywords

Comments

On Jul 15 1988 during a colloquium talk at Bell Labs, John Conway stated that he could prove that a(n)/n -> 1/2 as n approached infinity, but that the proof was extremely difficult. He therefore offered $100 to someone who could find an n_0 such that for all n >= n_0, we have |a(n)/n - 1/2| < 0.05, and he offered $10,000 for the least such n_0. I took notes (a scan of my notebook pages appears below), plus the talk - like all Bell Labs Colloquia at that time - was recorded on video. John said afterwards that he meant to say $1000, but in fact he said $10,000. I was in the front row. The prize was claimed by Colin Mallows, who agreed not to cash the check. - N. J. A. Sloane, Oct 21 2015
a(n) - a(n-1) = 0 or 1 (see the D. Newman reference). - Emeric Deutsch, Jun 06 2005
a(A188163(n)) = n and a(m) < n for m < A188163(n). - Reinhard Zumkeller, Jun 03 2011
From Daniel Forgues, Oct 04 2019: (Start)
Conjectures:
a(n) = n/2 iff n = 2^k, k >= 1.
a(n) = 2^(k-1): k times, for n = 2^k - (k-1) to 2^k, k >= 1. (End)

Examples

			If n=4, 2^4=16, a(16-i) = 2^(4-1) = 8 for 0 <= i <= 4-1 = 3, hence a(16)=a(15)=a(14)=a(13)=8.
		

References

  • J. Arkin, D. C. Arney, L. S. Dewald and W. E. Ebel, Jr., Families of recursive sequences, J. Rec. Math., 22 (No. 22, 1990), 85-94.
  • B. W. Conolly, Meta-Fibonacci sequences, in S. Vajda, editor, "Fibonacci and Lucas Numbers and the Golden Section", Halstead Press, NY, 1989, pp. 127-138.
  • R. K. Guy, Unsolved Problems Number Theory, Sect. E31.
  • D. R. Hofstadter, personal communication.
  • C. A. Pickover, Wonders of Numbers, "Cards, Frogs and Fractal sequences", Chapter 96, pp. 217-221, Oxford Univ. Press, NY, 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Wiley, 1989, see p. 129.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.

Crossrefs

Cf. A005229, A005185, A080677, A088359, A087686, A093879 (first differences), A265332, A266341, A055748 (a chaotic cousin), A188163 (greedy inverse).
Cf. A004074 (A249071), A005350, A005707, A093878. Different from A086841. Run lengths give A051135.
Cf. also permutations A267111-A267112 and arrays A265901, A265903.

Programs

  • Haskell
    a004001 n = a004001_list !! (n-1)
    a004001_list = 1 : 1 : h 3 1  {- memoization -}
      where h n x = x' : h (n + 1) x'
              where x' = a004001 x + a004001 (n - x)
    -- Reinhard Zumkeller, Jun 03 2011
    
  • Magma
    [n le 2 select 1 else Self(Self(n-1))+ Self(n-Self(n-1)):n in [1..75]]; // Marius A. Burtea, Aug 16 2019
    
  • Maple
    A004001 := proc(n) option remember; if n<=2 then 1 else procname(procname(n-1)) +procname(n-procname(n-1)); fi; end;
  • Mathematica
    a[1] = 1; a[2] = 1; a[n_] := a[n] = a[a[n - 1]] + a[n - a[n - 1]]; Table[ a[n], {n, 1, 75}] (* Robert G. Wilson v *)
  • PARI
    a=vector(100);a[1]=a[2]=1;for(n=3,#a,a[n]=a[a[n-1]]+a[n-a[n-1]]);a \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    first(n)=my(v=vector(n)); v[1]=v[2]=1; for(k=3, n, v[k]=v[v[k-1]]+v[k-v[k-1]]); v \\ Charles R Greathouse IV, Feb 26 2017
    
  • Python
    def a004001(n):
        A = {1: 1, 2: 1}
        c = 1 #counter
        while n not in A.keys():
            if c not in A.keys():
                A[c] = A[A[c-1]] + A[c-A[c-1]]
            c += 1
        return A[n]
    # Edward Minnix III, Nov 02 2015
    
  • SageMath
    @CachedFunction
    def a(n): # a = A004001
        if n<3: return 1
        else: return a(a(n-1)) + a(n-a(n-1))
    [a(n) for n in range(1,101)] # G. C. Greubel, Apr 25 2024
  • Scheme
    ;; An implementation of memoization-macro definec can be found for example from: http://oeis.org/wiki/Memoization
    (definec (A004001 n) (if (<= n 2) 1 (+ (A004001 (A004001 (- n 1))) (A004001 (- n (A004001 (- n 1)))))))
    ;; Antti Karttunen, Oct 22 2014
    

Formula

Limit_{n->infinity} a(n)/n = 1/2 and as special cases, if n > 0, a(2^n-i) = 2^(n-1) for 0 <= i < = n-1; a(2^n+1) = 2^(n-1) + 1. - Benoit Cloitre, Aug 04 2002 [Corrected by Altug Alkan, Apr 03 2017]

A000001 Number of groups of order n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2, 5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 13, 1, 2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 50, 1, 2, 3, 4, 1, 6, 1, 52, 15, 2, 1, 15, 1, 2, 1, 12, 1, 10, 1, 4, 2
Offset: 0

Views

Author

Keywords

Comments

Also, number of nonisomorphic subgroups of order n in symmetric group S_n. - Lekraj Beedassy, Dec 16 2004
Also, number of nonisomorphic primitives (antiderivatives) of the combinatorial species Lin[n-1], or X^{n-1}; see Rajan, Summary item (i). - Nicolae Boicu, Apr 29 2011
In (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), a(n) is called the "group number of n", denoted by gnu(n), and the first occurrence of k is called the "minimal order attaining k", denoted by moa(k) (see A046057). - Daniel Forgues, Feb 15 2017
It is conjectured in (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008) that the sequence n -> a(n) -> a(a(n)) = a^2(n) -> a(a(a(n))) = a^3(n) -> ... -> consists ultimately of 1s, where a(n), denoted by gnu(n), is called the "group number of n". - Muniru A Asiru, Nov 19 2017
MacHale (2020) shows that there are infinitely many values of n for which there are more groups than rings of that order (cf. A027623). He gives n = 36355 as an example. It would be nice to have enough values of n to create an OEIS entry for them. - N. J. A. Sloane, Jan 02 2021
I conjecture that a(i) * a(j) <= a(i*j) for all nonnegative integers i and j. - Jorge R. F. F. Lopes, Apr 21 2024

Examples

			Groups of orders 1 through 10 (C_n = cyclic, D_n = dihedral of order n, Q_8 = quaternion, S_n = symmetric):
1: C_1
2: C_2
3: C_3
4: C_4, C_2 X C_2
5: C_5
6: C_6, S_3=D_6
7: C_7
8: C_8, C_4 X C_2, C_2 X C_2 X C_2, D_8, Q_8
9: C_9, C_3 X C_3
10: C_10, D_10
		

References

  • S. R. Blackburn, P. M. Neumann, and G. Venkataraman, Enumeration of Finite Groups, Cambridge, 2007.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 302, #35.
  • J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 209.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 134.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 150.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley Publ. Co., Reading, MA, 1989, Section 6.6 'Fibonacci Numbers' pp. 281-283.
  • M. Hall, Jr. and J. K. Senior, The Groups of Order 2^n (n <= 6). Macmillan, NY, 1964.
  • D. Joyner, 'Adventures in Group Theory', Johns Hopkins Press. Pp. 169-172 has table of groups of orders < 26.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.24, p. 481.
  • M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128. Group theory (Singapore, 1987), 437-442, de Gruyter, Berlin-New York, 1989.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The main sequences concerned with group theory are A000001 (this one), A000679, A001034, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A000688, A060689, A051532.
A003277 gives n for which A000001(n) = 1, A063756 (partial sums).
A046057 gives first occurrence of each k.
A027623 gives the number of rings of order n.

Programs

  • GAP
    A000001 := Concatenation([0], List([1..500], n -> NumberSmallGroups(n))); # Muniru A Asiru, Oct 15 2017
  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n) : n in [1..1000] ]; // John Cannon, Dec 23 2006
    
  • Maple
    GroupTheory:-NumGroups(n); # with(GroupTheory); loads this command - N. J. A. Sloane, Dec 28 2017
  • Mathematica
    FiniteGroupCount[Range[100]] (* Harvey P. Dale, Jan 29 2013 *)
    a[ n_] := If[ n < 1, 0, FiniteGroupCount @ n]; (* Michael Somos, May 28 2014 *)

Formula

From Mitch Harris, Oct 25 2006: (Start)
For p, q, r primes:
a(p) = 1, a(p^2) = 2, a(p^3) = 5, a(p^4) = 14, if p = 2, otherwise 15.
a(p^5) = 61 + 2*p + 2*gcd(p-1,3) + gcd(p-1,4), p >= 5, a(2^5)=51, a(3^5)=67.
a(p^e) ~ p^((2/27)e^3 + O(e^(8/3))).
a(p*q) = 1 if gcd(p,q-1) = 1, 2 if gcd(p,q-1) = p. (p < q)
a(p*q^2) is one of the following:
---------------------------------------------------------------------------
| a(p*q^2) | p*q^2 of the form | Sequences (p*q^2) |
---------- ------------------------------------------ ---------------------
| (p+9)/2 | q == 1 (mod p), p odd | A350638 |
| 5 | p=3, q=2 => p*q^2 = 12 |Special case with A_4|
| 5 | p=2, q odd | A143928 |
| 5 | p == 1 (mod q^2) | A350115 |
| 4 | p == 1 (mod q), p > 3, p !== 1 (mod q^2) | A349495 |
| 3 | q == -1 (mod p), p and q odd | A350245 |
| 2 | q !== +-1 (mod p) and p !== 1 (mod q) | A350422 |
---------------------------------------------------------------------------
[Table from Bernard Schott, Jan 18 2022]
a(p*q*r) (p < q < r) is one of the following:
q == 1 (mod p) r == 1 (mod p) r == 1 (mod q) a(p*q*r)
-------------- -------------- -------------- --------
No No No 1
No No Yes 2
No Yes No 2
No Yes Yes 4
Yes No No 2
Yes No Yes 3
Yes Yes No p+2
Yes Yes Yes p+4
[table from Derek Holt].
(End)
a(n) = A000688(n) + A060689(n). - R. J. Mathar, Mar 14 2015

Extensions

More terms from Michael Somos
Typo in b-file description fixed by David Applegate, Sep 05 2009

A001317 Sierpiński's triangle (Pascal's triangle mod 2) converted to decimal.

Original entry on oeis.org

1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295, 4294967297, 12884901891, 21474836485, 64424509455, 73014444049, 219043332147, 365072220245, 1095216660735, 1103806595329, 3311419785987
Offset: 0

Views

Author

Keywords

Comments

The members are all palindromic in binary, i.e., a subset of A006995. - Ralf Stephan, Sep 28 2004
J. H. Conway writes (in Math Forum): at least the first 31 numbers give odd-sided constructible polygons. See also A047999. - M. Dauchez (mdzzdm(AT)yahoo.fr), Sep 19 2005 [This observation was also made in 1982 by N. L. White (see letter). - N. J. A. Sloane, Jun 15 2015]
Decimal number generated by the binary bits of the n-th generation of the Rule 60 elementary cellular automaton. Thus: 1; 0, 1, 1; 0, 0, 1, 0, 1; 0, 0, 0, 1, 1, 1, 1; 0, 0, 0, 0, 1, 0, 0, 0, 1; ... . - Eric W. Weisstein, Apr 08 2006
Limit_{n->oo} log(a(n))/n = log(2). - Bret Mulvey, May 17 2008
Equals row sums of triangle A166548; e.g., 17 = (2 + 4 + 6 + 4 + 1). - Gary W. Adamson, Oct 16 2009
Equals row sums of triangle A166555. - Gary W. Adamson, Oct 17 2009
For n >= 1, all terms are in A001969. - Vladimir Shevelev, Oct 25 2010
Let n,m >= 0 be such that no carries occur when adding them. Then a(n+m) = a(n)*a(m). - Vladimir Shevelev, Nov 28 2010
Let phi_a(n) be the number of a(k) <= a(n) and respectively prime to a(n) (i.e., totient function over {a(n)}). Then, for n >= 1, phi_a(n) = 2^v(n), where v(n) is the number of 0's in the binary representation of n. - Vladimir Shevelev, Nov 29 2010
Trisection of this sequence gives rows of A008287 mod 2 converted to decimal. See also A177897, A177960. - Vladimir Shevelev, Jan 02 2011
Converting the rows of the powers of the k-nomial (k = 2^e where e >= 1) term-wise to binary and reading the concatenation as binary number gives every (k-1)st term of this sequence. Similarly with powers p^k of any prime. It might be interesting to study how this fails for powers of composites. - Joerg Arndt, Jan 07 2011
This sequence appears in Pascal's triangle mod 2 in another way, too. If we write it as
1111111...
10101010...
11001100...
10001000...
we get (taking the period part in each row):
.(1) (base 2) = 1
.(10) = 2/3
.(1100) = 12/15 = 4/5
.(1000) = 8/15
The k-th row, treated as a binary fraction, seems to be equal to 2^k / a(k). - Katarzyna Matylla, Mar 12 2011
From Daniel Forgues, Jun 16-18 2011: (Start)
Since there are 5 known Fermat primes, there are 32 products of distinct Fermat primes (thus there are 31 constructible odd-sided polygons, since a polygon has at least 3 sides). a(0)=1 (empty product) and a(1) to a(31) are those 31 non-products of distinct Fermat primes.
It can be proved by induction that all terms of this sequence are products of distinct Fermat numbers (A000215):
a(0)=1 (empty product) are products of distinct Fermat numbers in { };
a(2^n+k) = a(k) * (2^(2^n)+1) = a(k) * F_n, n >= 0, 0 <= k <= 2^n - 1.
Thus for n >= 1, 0 <= k <= 2^n - 1, and
a(k) = Product_{i=0..n-1} F_i^(alpha_i), alpha_i in {0, 1},
this implies
a(2^n+k) = Product_{i=0..n-1} F_i^(alpha_i) * F_n, alpha_i in {0, 1}.
(Cf. OEIS Wiki links below.) (End)
The bits in the binary expansion of a(n) give the coefficients of the n-th power of polynomial (X+1) in ring GF(2)[X]. E.g., 3 ("11" in binary) stands for (X+1)^1, 5 ("101" in binary) stands for (X+1)^2 = (X^2 + 1), and so on. - Antti Karttunen, Feb 10 2016

Examples

			Given a(5)=51, a(6)=85 since a(5) XOR 2*a(5) = 51 XOR 102 = 85.
From _Daniel Forgues_, Jun 18 2011: (Start)
  a(0) = 1 (empty product);
  a(1) = 3 = 1 * F_0 = a(2^0+0) = a(0) * F_0;
  a(2) = 5 = 1 * F_1 = a(2^1+0) = a(0) * F_1;
  a(3) = 15 = 3 * 5 = F_0 * F_1 = a(2^1+1) = a(1) * F_1;
  a(4) = 17 = 1 * F_2 = a(2^2+0) = a(0) * F_2;
  a(5) = 51 = 3 * 17 = F_0 * F_2 = a(2^2+1) = a(1) * F_2;
  a(6) = 85 = 5 * 17 = F_1 * F_2 = a(2^2+2) = a(2) * F_2;
  a(7) = 255 = 3 * 5 * 17 = F_0 * F_1 * F_2 = a(2^2+3) = a(3) * F_2;
  ... (End)
		

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 113.
  • Henry Wadsworth Gould, Exponential Binomial Coefficient Series, Tech. Rep. 4, Math. Dept., West Virginia Univ., Morgantown, WV, Sept. 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 136-137.

Crossrefs

Cf. A038183 (odd bisection, 1D Cellular Automata Rule 90).
Iterates of A048724 (starting from 1).
Row 3 of A048723.
Positions of records in A268389.
Positions of ones in A268669 and A268384 (characteristic function).
Not the same as A045544 nor as A053576.
Cf. A045544.

Programs

  • Haskell
    a001317 = foldr (\u v-> 2*v + u) 0 . map toInteger . a047999_row
    -- Reinhard Zumkeller, Nov 24 2012
    (Scheme, with memoization-macro definec, two variants)
    (definec (A001317 n) (if (zero? n) 1 (A048724 (A001317 (- n 1)))))
    (definec (A001317 n) (if (zero? n) 1 (A048720bi 3 (A001317 (- n 1))))) ;; Where A048720bi implements the dyadic function given in A048720.
    ;; Antti Karttunen, Feb 10 2016
    
  • Magma
    [&+[(Binomial(n, i) mod 2)*2^i: i in [0..n]]: n in [0..41]]; // Vincenzo Librandi, Feb 12 2016
    
  • Maple
    A001317 := proc(n) local k; add((binomial(n,k) mod 2)*2^k, k=0..n); end;
  • Mathematica
    a[n_] := Nest[ BitXor[#, BitShiftLeft[#, 1]] &, 1, n]; Array[a, 42, 0] (* Joel Madigan (dochoncho(AT)gmail.com), Dec 03 2007 *)
    NestList[BitXor[#,2#]&,1,50] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    a(n)=sum(i=0,n,(binomial(n,i)%2)*2^i)
    
  • PARI
    a=1; for(n=0, 66, print1(a,", "); a=bitxor(a,a<<1) ); \\ Joerg Arndt, Mar 27 2013
    
  • PARI
    A001317(n,a=1)={for(k=1,n,a=bitxor(a,a<<1));a} \\ M. F. Hasler, Jun 06 2016
    
  • PARI
    a(n) = subst(lift(Mod(1+'x,2)^n), 'x, 2); \\ Gheorghe Coserea, Nov 09 2017
    
  • Python
    from sympy import binomial
    def a(n): return sum([(binomial(n, i)%2)*2**i for i in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
    
  • Python
    def A001317(n): return int(''.join(str(int(not(~n&k))) for k in range(n+1)),2) # Chai Wah Wu, Feb 04 2022

Formula

a(n+1) = a(n) XOR 2*a(n), where XOR is binary exclusive OR operator. - Paul D. Hanna, Apr 27 2003
a(n) = Product_{e(j, n) = 1} (2^(2^j) + 1), where e(j, n) is the j-th least significant digit in the binary representation of n (Roberts: see Allouche & Shallit). - Benoit Cloitre, Jun 08 2004
a(2*n+1) = 3*a(2*n). Proof: Since a(n) = Product_{k in K} (1 + 2^(2^k)), where K is the set of integers such that n = Sum_{k in K} 2^k, clearly K(2*n+1) = K(2*n) union {0}, hence a(2*n+1) = (1+2^(2^0))*a(2*n) = 3*a(2*n). - Emmanuel Ferrand and Ralf Stephan, Sep 28 2004
a(32*n) = 3 ^ (32 * n * log(2) / log(3)) + 1. - Bret Mulvey, May 17 2008
For n >= 1, A000120(a(n)) = 2^A000120(n). - Vladimir Shevelev, Oct 25 2010
a(2^n) = A000215(n); a(2^n-1) = a(2^n)-2; for n >= 1, m >= 0,
a(2^(n-1)-1)*a(2^n*m + 2^(n-1)) = 3*a(2^(n-1))*a(2^n*m + 2^(n-1)-2). - Vladimir Shevelev, Nov 28 2010
Sum_{k>=0} 1/a(k) = Product_{n>=0} (1 + 1/F_n), where F_n=A000215(n);
Sum_{k>=0} (-1)^(m(k))/a(k) = 1/2, where {m(n)} is Thue-Morse sequence (A010060).
If F_n is defined by F_n(z) = z^(2^n) + 1 and a(n) by (1/2)*Sum_{i>=0}(1-(-1)^{binomial(n,i)})*z^i, then, for z > 1, the latter two identities hold as well with the replacement 1/2 in the right hand side of the 2nd one by 1-1/z. - Vladimir Shevelev, Nov 29 2010
G.f.: Product_{k>=0} ( 1 + z^(2^k) + (2*z)^(2^k) ). - conjectured by Shamil Shakirov, proved by Vladimir Shevelev
a(n) = A000225(n+1) - A219843(n). - Reinhard Zumkeller, Nov 30 2012
From Antti Karttunen, Feb 10 2016: (Start)
a(0) = 1, and for n > 1, a(n) = A048720(3, a(n-1)) = A048724(a(n-1)).
a(n) = A048723(3,n).
a(n) = A193231(A000079(n)).
For all n >= 0: A268389(a(n)) = n.
(End)

A005169 Number of fountains of n coins.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 15, 26, 45, 78, 135, 234, 406, 704, 1222, 2120, 3679, 6385, 11081, 19232, 33379, 57933, 100550, 174519, 302903, 525734, 912493, 1583775, 2748893, 4771144, 8281088, 14373165, 24946955, 43299485, 75153286, 130440740, 226401112, 392955956, 682038999, 1183789679, 2054659669, 3566196321, 6189714276
Offset: 0

Views

Author

Keywords

Comments

A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row.
Also the number of Dyck paths for which the sum of the heights of the vertices that terminate an upstep (i.e., peaks and doublerises) is n. Example: a(4)=3 because we have UDUUDD, UUDDUD and UDUDUDUD. - Emeric Deutsch, Mar 22 2008
Also the number of ordered trees with path length n (follows from previous comment via a standard bijection). - Emeric Deutsch, Mar 22 2008
Probably first studied by Jim Propp (unpublished).
Number of compositions of n with c(1) = 1 and c(i+1) <= c(i) + 1. (Slide each row right 1/2 step relative to the row below, and count the columns.) - Franklin T. Adams-Watters, Nov 24 2009
With the additional requirement for weak unimodality one obtains A001524. - Joerg Arndt, Dec 09 2012

Examples

			An example of a fountain with 19 coins:
... O . O O
.. O O O O O O . O
. O O O O O O O O O
From _Peter Bala_, Dec 26 2012: (Start)
F(1/10) = Sum_{n >= 0} a(n)/10^n has the simple continued fraction expansion 1 + 1/(8 + 1/(1 + 1/(8 + 1/(1 + 1/(98 + 1/(1 + 1/(98 + 1/(1 + 1/(998 + 1/(1 + 1/(998 + 1/(1 + ...)))))))))))).
F(-1/10) = Sum_{n >= 0} (-1)^n*a(n)/10^n has the simple continued fraction expansion 1/(1 + 1/(9 + 1/(1 + 1/(9 + 1/(99 + 1/(1 + 1/(99 + 1/(999 + 1/(1 + 1/(999 + 1/(9999 + 1/(1 + ...)))))))))))).
(End)
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001524, A192728, A192729, A192730, A111317, A143951, A285903, A226999 (inverse Euler transform), A291148 (convolution inverse).
First column of A168396. - Franklin T. Adams-Watters, Nov 24 2009
Diagonal of A185646.
Row sums of A047998. Column sums of A138158. - Emeric Deutsch, Mar 22 2008

Programs

  • Haskell
    a005169 0 = 1
    a005169 n = a168396 n 1  -- Reinhard Zumkeller, Sep 13 2013; corrected by R. J. Mathar, Sep 16 2013
  • Maple
    P[0]:=1: for n to 40 do P[n]:=sort(expand(t*(sum(P[j]*P[n-j-1]*t^(n-j-1),j= 0..n-1)))) end do: F:=sort(sum(P[k],k=0..40)): seq(coeff(F,t,j),j=0..36); # Emeric Deutsch, Mar 22 2008
    # second Maple program:
    A005169_G:= proc(x,NK); Digits:=250; Q2:=1;
            for k from NK by -1 to 0 do  Q1:=1-x^k/Q2; Q2:=Q1; od;
            Q3:=Q2; S:=1-Q3;
    end:
    series(A005169_G(x, 20), x, 21); # Sergei N. Gladkovskii, Dec 18 2011
  • Mathematica
    m = 36; p[0] = 1; p[n_] := p[n] = Expand[t*Sum[p[j]*p[n-j-1]*t^(n-j-1), {j, 0, n-1}]]; f[t_] = Sum[p[k], {k, 0, m}]; CoefficientList[Series[f[t], {t, 0, m}], t] (* Jean-François Alcover, Jun 21 2011, after Emeric Deutsch *)
    max = 43; Series[1-Fold[Function[1-x^#2/#1], 1, Range[max, 0, -1]], {x, 0, max}] // CoefficientList[#, x]& (* Jean-François Alcover, Sep 16 2014 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, j], {j, 1, Min[i+1, n]}]];
    c[n_] :=  b[n, 0] - b[n-1, 0];
    c /@ Range[0, 50] // Accumulate  (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz in A289080 *)
  • PARI
    /* using the g.f. from p. L1278 of the Glasser, Privman, Svrakic paper */
    N=30;  x='x+O('x^N);
    P(k)=sum(n=0,N, (-1)^n*x^(n*(n+1+k))/prod(j=1,n,1-x^j));
    G=1+x*P(1)/( (1-x)*P(1)-x^2*P(2) );
    Vec(G) /* Joerg Arndt, Feb 10 2011 */
    
  • PARI
    /* As a continued fraction: */
    {a(n)=local(A=1+x,CF);CF=1+x;for(k=0,n,CF=1/(1-x^(n-k+1)*CF+x*O(x^n));A=CF);polcoeff(A,n)} /* Paul D. Hanna */
    
  • PARI
    /* By the Rogers-Ramanujan continued fraction identity: */
    {a(n)=local(A=1+x,P,Q);
    P=sum(m=0,sqrtint(n),(-1)^m*x^(m*(m+1))/prod(k=1,m,1-x^k));
    Q=sum(m=0,sqrtint(n),(-1)^m*x^(m^2)/prod(k=1,m,1-x^k));
    A=P/(Q+x*O(x^n));polcoeff(A,n)}  /* Paul D. Hanna */
    

Formula

A005169(n) = f(n, 1), where f(n, p) = 0 if p > n, 1 if p = n, Sum(1 <= q <= p+1; f(n-p, q)) if p < n. f=A168396.
G.f.: F(t) = Sum_{k>=0} P[k], where P[0]=1, P[n] = t*Sum_{j= 0..n-1} P[j]*P[n-j-1]*t^(n-j-1) for n >= 1. - Emeric Deutsch, Mar 22 2008
G.f.: 1/(1-x/(1-x^2/(1-x^3/(1-x^4/(1-x^5/(...)))))) [given on the first page of the Odlyzko/Wilf reference]. - Joerg Arndt, Mar 08 2011
G.f.: 1/G(0), where G(k)= 1 - x^(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jun 29 2013
G.f.: A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} (-1)^n* x^(n*(n+1)) / Product_{k=1..n} (1-x^k),
Q(x) = Sum_{n>=0} (-1)^n* x^(n^2) / Product_{k=1..n} (1-x^k),
due to the Rogers-Ramanujan continued fraction identity. - Paul D. Hanna, Jul 08 2011
From Peter Bala, Dec 26 2012: (Start)
Let F(x) denote the o.g.f. of this sequence. For positive integer n >= 3, the real number F(1/n) has the simple continued fraction expansion 1 + 1/(n-2 + 1/(1 + 1/(n-2 + 1/(1 + 1/(n^2-2 + 1/(1 + 1/(n^2-2 + 1/(1 + ...)))))))), while for n >= 2, F(-1/n) has the simple continued fraction expansion 1/(1 + 1/(n-1 + 1/(1 + 1/(n-1 + 1/(n^2-1 + 1/(1 + 1/(n^2-1 + 1/(n^3-1 + 1/(1 + ...))))))))). Examples are given below. Cf. A111317 and A143951.
(End)
a(n) = c * x^(-n) + O((5/3)^n), where c = 0.312363324596741... and x = A347901 = 0.576148769142756... is the lowest root of the equation Q(x) = 0, Q(x) see above (Odlyzko & Wilf 1988). - Vaclav Kotesovec, Jul 18 2013, updated Sep 24 2020
G.f.: G(0), where G(k)= 1 - x^(k+1)/(x^(k+1) - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 06 2013
G.f.: 1 - 1/x + 1/(x*W(0)), where W(k)= 1 - x^(2*k+2)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013

Extensions

More terms from David W. Wilson, Apr 30 2001

A001611 a(n) = Fibonacci(n) + 1.

Original entry on oeis.org

1, 2, 2, 3, 4, 6, 9, 14, 22, 35, 56, 90, 145, 234, 378, 611, 988, 1598, 2585, 4182, 6766, 10947, 17712, 28658, 46369, 75026, 121394, 196419, 317812, 514230, 832041, 1346270, 2178310, 3524579, 5702888, 9227466, 14930353, 24157818, 39088170, 63245987, 102334156
Offset: 0

Views

Author

Keywords

Comments

a(0) = 1, a(1) = 2 then the largest number such that a triangle is constructible with three successive terms as sides. - Amarnath Murthy, Jun 03 2003
a(n+2) = A^(n)B(1), n>=0, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 2=`0`, 3=`10`, 4=`110`, 6=`1110`, ..., in Wythoff code.
The first-difference sequence is the Fibonacci sequence (A000045). - Roland Schroeder (florola(AT)gmx.de), Aug 05 2010
2 and 3 are the only primes in this sequence.
a(n) is the number of 1 X n nonogram puzzles which can be solved uniquely. See A242876 for puzzle definition. - Lior Manor, Jan 23 2022

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001611 = (+ 1) . a000045
    a001611_list = 1 : 2 : map (subtract 1)
                           (zipWith (+) a001611_list $ tail a001611_list)
    -- Reinhard Zumkeller, Jul 30 2013
  • Magma
    [Fibonacci(n)+1: n in [1..37]]; // Bruno Berselli, Jul 26 2011
    
  • Maple
    A001611:=-(-1+2*z**2)/(z-1)/(z**2+z-1); # Simon Plouffe in his 1992 dissertation
    with(combinat): seq((fibonacci(n)+1), n=0..35);
  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = a[n-2] + a[n-1] - 1; Table[ a[n], {n, 0, 40} ]
    Fibonacci[Range[0,50]]+1  (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    a(n)=fibonacci(n)+1 \\ Charles R Greathouse IV, Jul 25 2011
    

Formula

G.f.: (1-2*x^2)/(1-2*x+x^3).
a(n) = 2*a(n-1) - a(n-3). - Tanya Khovanova, Jul 13 2007
a(0) = 1, a(1) = 2, a(n) = a(n - 2) + a(n - 1) - 1.
F(4*n) + 1 = F(2*n-1)*L(2*n+1); F(4*n+1) + 1 = F(2*n+1)*L(2*n); F(4*n+2) + 1 = F(2*n+2)*L(2*n); F(4*n+3) + 1 = F(2*n+1)*L(2*n+2) where F(n)=Fibonacci(n) and L(n)=Lucas(n). - R. K. Guy, Feb 27 2003
a(1) = 2; a(n+1)=floor(a(n)*(sqrt(5)+1)/2). - Roland Schroeder (florola(AT)gmx.de), Aug 05 2010
a(n) = Sum_{k=0..n+1} Fibonacci(k-3). - Ehren Metcalfe, Apr 15 2019
Product_{n>=1} (1 - (-1)^n/a(n)) = sin(3*Pi/10) (A019863). - Amiram Eldar, Nov 28 2024

A000149 a(n) = floor(e^n).

Original entry on oeis.org

1, 2, 7, 20, 54, 148, 403, 1096, 2980, 8103, 22026, 59874, 162754, 442413, 1202604, 3269017, 8886110, 24154952, 65659969, 178482300, 485165195, 1318815734, 3584912846, 9744803446, 26489122129, 72004899337, 195729609428, 532048240601, 1446257064291
Offset: 0

Views

Author

Keywords

Comments

A000079(n) <= a(n) <= A000244(n); for n > 0: A064780(n) = a(n+1) - a(n). - Reinhard Zumkeller, Mar 17 2015
Satisfies Benford's law [Whyman et al., 2016]. - N. J. A. Sloane, Feb 12 2017

References

  • Federal Works Agency, Work Projects Administration for the City of NY, Tables of the Exponential Function. National Bureau of Standards, Washington, DC, 1939.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 230.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection: A116472.
Cf. A001113, A003619, A000079, A000244, A064780 (first differences, apart from initial term).
Cf. A000227 (round e^n), A001671 (ceiling e^n).

Programs

  • Haskell
    a000149 = floor . (exp 1 ^)
    a000149_list = let e = exp 1 in map floor $ iterate (* e) 1
    -- Reinhard Zumkeller, Mar 17 2015
    
  • Mathematica
    a[n_]:=Floor[E^n]; (* Vladimir Joseph Stephan Orlovsky, Dec 12 2008 *)
    Floor[E^Range[0,30]] (* Harvey P. Dale, Apr 01 2012 *)
  • PARI
    a(n) = floor(exp(n)); \\ Arkadiusz Wesolowski, Nov 26 2011
    
  • PARI
    apply( A000149(n)=exp(n)\1, [0..30]) \\ An error message will say so if default(realprecision) must be increased, for large n. - M. F. Hasler, May 27 2018
    
  • Python
    from sympy import floor, E
    def a(n):  return floor(E**n)
    print([a(n) for n in range(29)]) # Michael S. Branicky, Jul 20 2021

Formula

a(n)^(1/n) converges to e because |1-a(n)/e^n|=|e^n-a(n)|/e^n < e^(-n) and so a(n)^(1/n)=(e^n*(1+o(1)))^(1/n)=e*(1+o(1)). - Hieronymus Fischer, Jan 22 2006

A003401 Numbers of edges of regular polygons constructible with ruler (or, more precisely, an unmarked straightedge) and compass.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272, 320, 340, 384, 408, 480, 510, 512, 514, 544, 640, 680, 768, 771, 816, 960, 1020, 1024, 1028, 1088, 1280, 1285
Offset: 1

Views

Author

Keywords

Comments

The terms 1 and 2 correspond to degenerate polygons.
These are also the numbers for which phi(n) is a power of 2: A209229(A000010(a(n))) = 1. - Olivier Gérard Feb 15 1999
From Stanislav Sykora, May 02 2016: (Start)
The sequence can be also defined as follows: (i) 1 is a member. (ii) Double of any member is also a member. (iii) If a member is not divisible by a Fermat prime F_k then its product with F_k is also a member. In particular, the powers of 2 (A000079) are a subset and so are the Fermat primes (A019434), which are the only odd prime members.
The definition is too restrictive (though correct): The Georg Mohr - Lorenzo Mascheroni theorem shows that constructibility using a straightedge and a compass is equivalent to using compass only. Moreover, Jean Victor Poncelet has shown that it is also equivalent to using straightedge and a fixed ('rusty') compass. With the work of Jakob Steiner, this became part of the Poncelet-Steiner theorem establishing the equivalence to using straightedge and a fixed circle (with a known center). A further extension by Francesco Severi replaced the availability of a circle with that of a fixed arc, no matter how small (but still with a known center).
Constructibility implies that when m is a member of this sequence, the edge length 2*sin(Pi/m) of an m-gon with circumradius 1 can be written as a finite expression involving only integer numbers, the four basic arithmetic operations, and the square root. (End)
If x,y are terms, and gcd(x,y) is a power of 2 then x*y is also a term. - David James Sycamore, Aug 24 2024

Examples

			34 is a term of this sequence because a circle can be divided into exactly 34 parts. 7 is not.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 183.
  • Allan Clark, Elements of Abstract Algebra, Chapter 4, Galois Theory, Dover Publications, NY 1984, page 124.
  • Duane W. DeTemple, "Carlyle circles and the Lemoine simplicity of polygon constructions." The American Mathematical Monthly 98.2 (1991): 97-108. - N. J. A. Sloane, Aug 05 2021
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. L. van der Waerden, Modern Algebra. Unger, NY, 2nd ed., Vols. 1-2, 1953, Vol. 1, p. 187.

Crossrefs

Subsequence of A295298. - Antti Karttunen, Nov 27 2017
A004729 and A051916 are subsequences. - Reinhard Zumkeller, Mar 20 2010
Cf. A000079, A004169, A000215, A099884, A019434 (Fermat primes).
Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17), A272536 (20).
Positions of zeros in A293516 (apart from two initial -1's), and in A336469, positions of ones in A295660 and in A336477 (characteristic function).
Cf. also A046528.

Programs

  • Haskell
    a003401 n = a003401_list !! (n-1)
    a003401_list = map (+ 1) $ elemIndices 1 $ map a209229 a000010_list
    -- Reinhard Zumkeller, Jul 31 2012
    
  • Mathematica
    Select[ Range[ 1300 ], IntegerQ[ Log[ 2, EulerPhi[ # ] ] ]& ] (* Olivier Gérard Feb 15 1999 *)
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Take[ Union[ Flatten[ NestList[2# &, Times @@@ Table[ UnrankSubset[n, Join[{1}, Table[2^2^i + 1, {i, 0, 4}]]], {n, 63}], 11]]], 60] (* Robert G. Wilson v, Jun 11 2005 *)
    nn=10; logs=Log[2,{2,3,5,17,257,65537}]; lim2=Floor[nn/logs[[1]]]; Sort[Reap[Do[z={i,j,k,l,m,n}.logs; If[z<=nn, Sow[2^z]], {i,0,lim2}, {j,0,1}, {k,0,1}, {l,0,1}, {m,0,1}, {n,0,1}]][[2,1]]]
    A092506 = {2, 3, 5, 17, 257, 65537}; s = Sort[Times @@@ Subsets@ A092506]; mx = 1300; Union@ Flatten@ Table[(2^n)*s[[i]], {i, 64}, {n, 0, Log2[mx/s[[i]]]}] (* Robert G. Wilson v, Jul 28 2014 *)
  • PARI
    for(n=1,10^4,my(t=eulerphi(n));if(t/2^valuation(t,2)==1,print1(n,", "))); \\ Joerg Arndt, Jul 29 2014
    
  • PARI
    is(n)=n>>=valuation(n,2); if(n<7, return(n>0)); my(k=logint(logint(n,2),2)); if(k>32, my(p=2^2^k+1); if(n%p, return(0)); n/=p; unknown=1; if(n%p==0, return(0)); p=0; if(is(n)==0, 0, "unknown [has large Fermat number in factorization]"), 4294967295%n==0) \\ Charles R Greathouse IV, Jan 09 2022
    
  • PARI
    is(n)=n>>=valuation(n,2); 4294967295%n==0 \\ valid for n <= 2^2^33, conjecturally valid for all n; Charles R Greathouse IV, Jan 09 2022
    
  • Python
    from sympy import totient
    A003401_list = [n for n in range(1,10**4) if format(totient(n),'b').count('1') == 1]
    # Chai Wah Wu, Jan 12 2015

Formula

Terms from 3 onward are computable as numbers such that cototient-of-totient equals the totient-of-totient: Flatten[Position[Table[co[eu[n]]-eu[eu[n]], {n, 1, 10000}], 0]] eu[m]=EulerPhi[m], co[m]=m-eu[m]. - Labos Elemer, Oct 19 2001, clarified by Antti Karttunen, Nov 27 2017
Any product of 2^k and distinct Fermat primes (primes of the form 2^(2^m)+1). - Sergio Pimentel, Apr 30 2004, edited by Franklin T. Adams-Watters, Jun 16 2006
If the well-known conjecture that there are only five prime Fermat numbers F_k=2^{2^k}+1, k=0,1,2,3,4 is true, then we have exactly: Sum_{n>=1} 1/a(n)= 2*Product_{k=0..4} (1+1/F_k) = 4869735552/1431655765 = 3.40147098978.... - Vladimir Shevelev and T. D. Noe, Dec 01 2010
log a(n) >> sqrt(n); if there are finitely many Fermat primes, then log a(n) ~ k log n for some k. - Charles R Greathouse IV, Oct 23 2015

Extensions

Definition clarified by Bill Gosper. - N. J. A. Sloane, Jun 14 2020

A005183 a(n) = n*2^(n-1) + 1.

Original entry on oeis.org

1, 2, 5, 13, 33, 81, 193, 449, 1025, 2305, 5121, 11265, 24577, 53249, 114689, 245761, 524289, 1114113, 2359297, 4980737, 10485761, 22020097, 46137345, 96468993, 201326593, 419430401, 872415233, 1811939329, 3758096385, 7784628225, 16106127361, 33285996545
Offset: 0

Views

Author

Keywords

Comments

a(n-1) is the number of permutations of length n which avoid the patterns 132, 4312. - Lara Pudwell, Jan 21 2006
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) <= e(j) >= e(k) and e(i) != e(k). [Martinez and Savage, 2.11] - Eric M. Schmidt, Jul 17 2017
Indices of records in A066099. Also, indices of "cusps" in the graph of A030303 giving positions of 1's in the binary Champernowne word A030190. - M. F. Hasler, Oct 12 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

Main diagonal of the array defined by T(0, j)=j+1 j>=0, T(i, 0)=i+1 i>=0, T(i, j)=T(i-1, j-1)+T(i-1, j)-1. - Benoit Cloitre, Jun 17 2003
G.f.: (1 -3*x +3*x^2)/((1-x)*(1-2*x)^2). - Lara Pudwell, Jan 21 2006
E.g.f.: exp(x) +x*exp(2*x). - Joerg Arndt, May 22 2013
Binomial transform of A028310. a(n) = 1 + Sum{k=0..n} C(n, k)*k = 1 + A001787(n). - Paul Barry, Jul 21 2003
a(n) = Sum_{k=0..2^n} A000120(k) = A000788(2^n). - Benoit Cloitre, Sep 25 2003
Row sums of triangle A134399. - Gary W. Adamson, Oct 23 2007
a(n) = A000788(A000079(n)). - Reinhard Zumkeller, Mar 04 2010
a(n) = 2*a(n-1) +2^(n-1) -1 (with a(0)=1). - Vincenzo Librandi, Dec 31 2010

Extensions

More terms from Lara Pudwell, Jan 21 2006
Edited by N. J. A. Sloane at the suggestion of Jim Propp, Jul 14 2007

A001034 Orders of noncyclic simple groups (without repetition).

Original entry on oeis.org

60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828, 12180, 14880, 20160, 25308, 25920, 29120, 32736, 34440, 39732, 51888, 58800, 62400, 74412, 95040, 102660, 113460, 126000, 150348, 175560, 178920
Offset: 1

Views

Author

Keywords

Comments

An alternative definition, to assist in searching: Orders of non-cyclic finite simple groups.
This comment is about the three sequences A001034, A060793, A056866: The Feit-Thompson theorem says that a finite group with odd order is solvable, hence all numbers in this sequence are even. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 08 2001 [Corrected by Isaac Saffold, Aug 09 2021]
The primitive elements are A257146. These are also the primitive elements of A056866. - Charles R Greathouse IV, Jan 19 2017
Conjecture: This is a subsequence of A083207 (Zumkeller numbers). Verified for n <= 156. A fast provisional test was used, based on Proposition 17 from Rao/Peng JNT paper (see A083207). For those few cases where the fast test failed (such as 2588772 and 11332452) the comprehensive (but much slower) test by T. D. Noe at A083207 was used for result confirmation. - Ivan N. Ianakiev, Jan 11 2020
From M. Farrokhi D. G., Aug 11 2020: (Start)
The conjecture is not true. The smallest and the only counterexample among the first 457 terms of the sequence is a(175) = 138297600.
On the other hand, the orders of sporadic simple groups are Zumkeller. And with the exception of the smallest two orders 7920 and 95040, the odd part of the other orders are also Zumkeller. (End)
Every term in this sequence is divisible by 4*p*q, where p and q are distinct odd primes. - Isaac Saffold, Oct 24 2021

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • Dickson L.E. Linear groups, with an exposition of the Galois field theory (Teubner, 1901), p. 309.
  • M. Hall, Jr., A search for simple groups of order less than one million, pp. 137-168 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A109379 (orders with repetition), A119648 (orders that are repeated).
Showing 1-10 of 34 results. Next