A245095
Triangle read by rows: T(n,k) = A006218(k)*A002865(n-k).
Original entry on oeis.org
1, 0, 3, 1, 0, 5, 1, 3, 0, 8, 2, 3, 5, 0, 10, 2, 6, 5, 8, 0, 14, 4, 6, 10, 8, 10, 0, 16, 4, 12, 10, 16, 10, 14, 0, 20, 7, 12, 20, 16, 20, 14, 16, 0, 23, 8, 21, 20, 32, 20, 28, 16, 20, 0, 27, 12, 24, 35, 32, 40, 28, 32, 20, 23, 0, 29, 14, 36, 40, 56, 40, 56, 32, 40, 23, 27, 0, 35
Offset: 1
Triangle begins:
1;
0, 3;
1, 0, 5;
1, 3, 0, 8;
2, 3, 5, 0, 10;
2, 6, 5, 8, 0, 14;
4, 6, 10, 8, 10, 0, 16;
4, 12, 10, 16, 10, 14, 0, 20;
7, 12, 20, 16, 20, 14, 16, 0, 23;
8, 21, 20, 32, 20, 28, 16, 20, 0, 27;
12, 24, 35, 32, 40, 28, 32, 20, 23, 0, 29;
14, 36, 40, 56, 40, 56, 32, 40, 23, 27, 0, 35;
...
For n = 6:
-------------------------
k A006218 T(6,k)
-------------------------
1 1 * 2 = 2
2 3 * 2 = 6
3 5 * 1 = 5
4 8 * 1 = 8
5 10 * 0 = 0
6 14 * 1 = 14
. A002865
-------------------------
So row 6 is [2, 6, 5, 8, 0, 14] and the sum of row 6 is 2+6+5+8+0+14 = 35 equaling A006128(6) = 35.
-
A245095row[n_]:=Accumulate[DivisorSigma[0,Range[n]]]Reverse[Differences[PartitionsP[Range[-1,n-1]]]];Array[A245095row,10] (* Paolo Xausa, Sep 04 2023 *)
-
a006218(n) = sum(k=1, n, n\k);
a002865(n) = if(n, numbpart(n)-numbpart(n-1), 1);
row(n) = vector(n, i, a006218(i)*a002865(n-i)); \\ Michel Marcus, Jul 18 2014
A182746
Bisection (even part) of number of partitions that do not contain 1 as a part A002865.
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 21, 34, 55, 88, 137, 210, 320, 478, 708, 1039, 1507, 2167, 3094, 4378, 6153, 8591, 11914, 16424, 22519, 30701, 41646, 56224, 75547, 101066, 134647, 178651, 236131, 310962, 408046, 533623, 695578, 903811, 1170827, 1512301, 1947826, 2501928
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Marco Baggio, Vasilis Niarchos, Kyriakos Papadodimas, and Gideon Vos, Large-N correlation functions in N = 2 superconformal QCD, arXiv preprint arXiv:1610.07612 [hep-th], 2016.
- K. Blum, Bounds on the Number of Graphical Partitions, arXiv:2103.03196 [math.CO], 2021. See Table on p. 7.
-
b:= proc(n, i) option remember;
if n<0 then 0
elif n=0 then 1
elif i<2 then 0
else b(n, i-1) +b(n-i, i)
fi
end:
a:= n-> b(2*n, 2*n):
seq(a(n), n=0..40); # Alois P. Heinz, Dec 01 2010
-
Table[Count[IntegerPartitions[2 n -1], p_ /; MemberQ[p, Length[p]]], {n, 20}] (* Clark Kimberling, Mar 02 2014 *)
b[n_, i_] := b[n, i] = Which[n<0, 0, n==0, 1, i<2, 0, True, b[n, i-1] + b[n-i, i]]; a[n_] := b[2*n, 2*n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *)
a[n_] := PartitionsP[2*n] - PartitionsP[2*n - 1]; Table[a[n], {n, 0, 40}] (* George Beck, Jun 05 2017 *)
-
a(n)=numbpart(2*n)-numbpart(2*n-1) \\ Charles R Greathouse IV, Jun 06 2017
A182747
Bisection (odd part) of number of partitions that do not contain 1 as a part A002865.
Original entry on oeis.org
0, 1, 2, 4, 8, 14, 24, 41, 66, 105, 165, 253, 383, 574, 847, 1238, 1794, 2573, 3660, 5170, 7245, 10087, 13959, 19196, 26252, 35717, 48342, 65121, 87331, 116600, 155038, 205343, 270928, 356169, 466610, 609237, 792906, 1028764, 1330772, 1716486, 2207851
Offset: 0
-
b:= proc(n,i) option remember;
if n<0 then 0
elif n=0 then 1
elif i<2 then 0
else b(n, i-1) +b(n-i, i)
fi
end:
a:= n-> b(2*n+1, 2*n+1):
seq(a(n), n=0..40); # Alois P. Heinz, Dec 01 2010
-
f[n_] := Table[PartitionsP[2 k + 1] - PartitionsP[2 k], {k, 0, n}] (* George Beck, Aug 14 2011 *)
(* also *)
Table[Count[IntegerPartitions[2 n], p_ /; MemberQ[p, Length[p]]], {n, 20}] (* Clark Kimberling, Mar 02 2014 *)
b[n_, i_] := b[n, i] = Which[n<0, 0, n == 0, 1, i<2, 0, True, b[n, i-1] + b[n-i, i]]; a[n_] := b[2*n+1, 2*n+1]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
A245099
Triangle read by rows: T(n,k) = A024916(k)*A002865(n-k).
Original entry on oeis.org
1, 0, 4, 1, 0, 8, 1, 4, 0, 15, 2, 4, 8, 0, 21, 2, 8, 8, 15, 0, 33, 4, 8, 16, 15, 21, 0, 41, 4, 16, 16, 30, 21, 33, 0, 56, 7, 16, 32, 30, 42, 33, 41, 0, 69, 8, 28, 32, 60, 42, 66, 41, 56, 0, 87, 12, 32, 56, 60, 84, 66, 82, 56, 69, 0, 99, 14, 48, 64
Offset: 1
Triangle begins:
1;
0, 4;
1, 0, 8;
1, 4, 0, 15;
2, 4, 8, 0, 21;
2, 8, 8, 15, 0, 33;
4, 8, 16, 15, 21, 0, 41;
4, 16, 16, 30, 21, 33, 0, 56;
7, 16, 32, 30, 42, 33, 41, 0, 69;
8, 28, 32, 60, 42, 66, 41, 56, 0, 87;
12, 32, 56, 60, 84, 66, 82, 56, 69, 0, 99;
...
For n = 6:
-------------------------
k A024916 T(6,k)
-------------------------
1 1 * 2 = 2
2 4 * 2 = 8
3 8 * 1 = 8
4 15 * 1 = 15
5 21 * 0 = 0
6 33 * 1 = 33
. A002865
-------------------------
So row 6 is [2, 8, 8, 15, 0, 33] and the sum of row 6 is 2+8+8+15+0+33 = 66 equaling A066186(6) = 6*A000041(6) = 6*11 = 66.
A340426
Triangle read by rows: T(n,k) = A000203(n-k+1)*A002865(k-1), 1 <= k <= n.
Original entry on oeis.org
1, 3, 0, 4, 0, 1, 7, 0, 3, 1, 6, 0, 4, 3, 2, 12, 0, 7, 4, 6, 2, 8, 0, 6, 7, 8, 6, 4, 15, 0, 12, 6, 14, 8, 12, 4, 13, 0, 8, 12, 12, 14, 16, 12, 7, 18, 0, 15, 8, 24, 12, 28, 16, 21, 8, 12, 0, 13, 15, 16, 24, 14, 28, 28, 24, 12, 28, 0, 18, 13, 30, 16, 48, 24, 49, 32, 36, 14, 14, 0, 12
Offset: 1
Triangle begins:
1;
3, 0;
4, 0, 1;
7, 0, 3, 1;
6, 0, 4, 3, 2;
12, 0, 7, 4, 6, 2;
8, 0, 6, 7, 8, 6, 4;
15, 0, 12, 6, 14, 8, 12, 4;
13, 0, 8, 12, 12, 14, 16, 12, 7;
18, 0, 15, 8, 24, 12, 28, 16, 21, 8;
12, 0, 13, 15, 16, 24, 14, 28, 28, 24, 12;
28, 0, 18, 13, 30, 16, 48, 24, 49, 32, 36, 14;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k A002865 T(6,k)
--------------------------
1 1 * 12 = 12
2 0 * 6 = 0
3 1 * 7 = 7
4 1 * 4 = 4
5 2 * 3 = 6
6 2 * 1 = 2
. A000203
--------------------------
The sum of row 6 is 12 + 0 + 7 + 4 + 6 + 2 = 31, equaling A138879(6) = 31.
A340424
Triangle read by rows: T(n,k) = A024916(n-k+1)*A002865(k-1), 1 <= k <= n.
Original entry on oeis.org
1, 4, 0, 8, 0, 1, 15, 0, 4, 1, 21, 0, 8, 4, 2, 33, 0, 15, 8, 8, 2, 41, 0, 21, 15, 16, 8, 4, 56, 0, 33, 21, 30, 16, 16, 4, 69, 0, 41, 33, 42, 30, 32, 16, 7, 87, 0, 56, 41, 66, 42, 60, 32, 28, 8, 99, 0, 69, 56, 82, 66, 84, 60, 56, 32, 12, 127, 0, 87, 69, 112, 82, 132, 84, 105, 64, 48, 14
Offset: 1
Triangle begins:
1;
4, 0;
8, 0, 1;
15, 0, 4, 1;
21, 0, 8, 4, 2;
33, 0, 15, 8, 8, 2;
41, 0, 21, 15, 16 8, 4;
56, 0, 33, 21, 30, 16, 16, 4;
69, 0, 41, 33, 42, 30, 32, 16, 7;
87, 0, 56, 41, 66, 42, 60, 32, 28, 8;
99, 0, 69, 56, 82, 66, 84, 60, 56, 32, 12;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k A002865 T(6,k)
--------------------------
1 1 * 33 = 33
2 0 * 21 = 0
3 1 * 15 = 15
4 1 * 8 = 8
5 2 * 4 = 8
6 2 * 1 = 2
. A024916
--------------------------
The sum of row 6 is 33 + 0 + 15 + 8 + 8 + 2 = 66, equaling A066186(6) = 66.
A122402
A sequence of rectangular tables with row sums A122401 related to A002865 and A122172.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 3, 6, 8, 8, 6, 3, 1
Offset: 0
There are four cyclic partitions of 6: 6, 42, 33 and 222; therefore the corresponding table is
1 1 1 1 1 1 1
1 2 3 3 3 2 1
1 2 3 4 3 2 1
1 3 6 7 6 3 1
The tables begin:
1
0
1 1 1
1 1 1 1
1 1 1 1 1
1 2 3 2 1
1 1 1 1 1 1
1 2 3 3 2 1
...
A340524
Triangle read by rows: T(n,k) = A000005(n-k+1)*A002865(k-1), 1 <= k <= n.
Original entry on oeis.org
1, 2, 0, 2, 0, 1, 3, 0, 2, 1, 2, 0, 2, 2, 2, 4, 0, 3, 2, 4, 2, 2, 0, 2, 3, 4, 4, 4, 4, 0, 4, 2, 6, 4, 8, 4, 3, 0, 2, 4, 4, 6, 8, 8, 7, 4, 0, 4, 2, 8, 4, 12, 8, 14, 8, 2, 0, 3, 4, 4, 8, 8, 12, 14, 16, 12, 6, 0, 4, 3, 8, 4, 16, 8, 21, 16, 24, 14, 2, 0, 2, 4, 6, 8, 8, 16, 14, 24, 24, 28, 21
Offset: 1
Triangle begins:
1;
2, 0;
2, 0, 1;
3, 0, 2, 1;
2, 0, 2, 2, 2;
4, 0, 3, 2, 4, 2;
2, 0, 2, 3, 4, 4, 4;
4, 0, 4, 2, 6, 4, 8, 4;
3, 0, 2, 4, 4, 6, 8, 8, 7;
4, 0, 4, 2, 8, 4, 12, 8, 14, 8;
2, 0, 3, 4, 4, 8, 8, 12, 14, 16, 12;
6, 0, 4, 3, 8, 4, 16, 8, 21, 16, 24, 14;
2, 0, 2, 4, 6, 8, 8, 16, 14, 24, 24, 28, 21;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k A002865 T(6,k)
--------------------------
1 1 * 4 = 4
2 0 * 2 = 0
3 1 * 3 = 3
4 1 * 2 = 2
5 2 * 2 = 4
6 2 * 1 = 2
. A000005
--------------------------
The sum of row 6 is 4 + 0 + 3 + 2 + 4 + 2 = 15, equaling A138137(6) = 15.
Row sums give
A138137 (conjectured).
Columns 7 and 8 give
A145154, n >= 1.
Cf.
A339304 (irregular or expanded version).
-
f(n) = if (n==0, 1, numbpart(n) - numbpart(n-1)); \\ A002865
T(n, k) = numdiv(n-k+1) * f(k-1); \\ Michel Marcus, Jan 13 2021
A340583
Triangle read by rows: T(n,k) = A002865(n-k)*A000203(k), 1 <= k <= n.
Original entry on oeis.org
1, 0, 3, 1, 0, 4, 1, 3, 0, 7, 2, 3, 4, 0, 6, 2, 6, 4, 7, 0, 12, 4, 6, 8, 7, 6, 0, 8, 4, 12, 8, 14, 6, 12, 0, 15, 7, 12, 16, 14, 12, 12, 8, 0, 13, 8, 21, 16, 28, 12, 24, 8, 15, 0, 18, 12, 24, 28, 28, 24, 24, 16, 15, 13, 0, 12, 14, 36, 32, 49, 24, 48, 16, 30, 13, 18, 0, 28
Offset: 1
Triangle begins:
1;
0, 3;
1, 0, 4;
1, 3, 0, 7;
2, 3, 4, 0, 6;
2, 6, 4, 7, 0, 12;
4, 6, 8, 7, 6, 0, 8;
4, 12, 8, 14, 6, 12, 0, 15;
7, 12, 16, 14, 12, 12, 8, 0, 13;
8, 21, 16, 28, 12, 24, 8, 15, 0, 18;
12, 24, 28, 28, 24, 24, 16, 15, 13, 0, 12;
14, 36, 32, 49, 24, 48, 16, 30, 13, 18, 0, 28;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k A000203 T(6,k)
--------------------------
1 1 * 2 = 2
2 3 * 2 = 6
3 4 * 1 = 4
4 7 * 1 = 7
5 6 * 0 = 0
6 12 * 1 = 12
. A002865
--------------------------
The sum of row 6 is 2 + 6 + 4 + 7 + 0 + 12 = 31, equaling A138879(6).
-
A340583[n_, k_] := (PartitionsP[n - k] - PartitionsP[(n - k) - 1])*
DivisorSigma[1, k];
Table[A340583[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Robert P. P. McKone, Jan 25 2021 *)
Original entry on oeis.org
0, 2, 4, 8, 15, 26, 45, 75, 121, 193, 302, 463, 703, 1052, 1555, 2277, 3301, 4740, 6754, 9548, 13398, 18678, 25873, 35620, 48771, 66418, 89988, 121345, 162878, 217666, 289685, 383994, 507059, 667131, 874656, 1142860, 1488484, 1932575, 2501599, 3228787
Offset: 0
a(0)=0 by definition. a(1)=1+1=2: a(2)=2+2=4. a(3)=4+4=8. a(4)=7+8=15. a(5)=12+14=26. a(6)=21+24=45.
Showing 1-10 of 410 results.
Comments