cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A117869 Partial sums of A000149.

Original entry on oeis.org

1, 3, 10, 30, 84, 232, 635, 1731, 4711, 12814, 34840, 94714, 257468, 699881, 1902485, 5171502, 14057612, 38212564, 103872533, 282354833, 767520028, 2086335762, 5671248608, 15416052054, 41905174183, 113910073520, 309639682948
Offset: 0

Views

Author

Jonathan Vos Post, May 02 2006

Keywords

Crossrefs

Cf. A000149.

Programs

  • Mathematica
    Accumulate[Floor[E^Range[0,4000]]] (* Harvey P. Dale, Jul 18 2011 *)

A119604 Merged values of A014217 = {floor(((1+sqrt(5))/2)^n)}, A000149 = {floor(e^n)}, and A001672 = {floor(Pi^n)}, with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 9, 11, 17, 20, 29, 31, 46, 54, 76, 97, 122, 148, 199, 306, 321, 403, 521, 842, 961, 1096, 1364, 2206, 2980, 3020, 3571, 5777, 8103, 9349, 9488, 15126, 22026, 24476
Offset: 0

Views

Author

Bryan David Levenson, Jun 03 2006

Keywords

Examples

			a(8)=6 because floor(((1+sqrt(5))/2)^4)=6, a(9)=7 because floor(e^2)=7 and a(10)=9 because floor(Pi^2)=9.
		

Crossrefs

Extensions

Edited by M. F. Hasler, May 29 2018

A000227 Nearest integer to e^n.

Original entry on oeis.org

1, 3, 7, 20, 55, 148, 403, 1097, 2981, 8103, 22026, 59874, 162755, 442413, 1202604, 3269017, 8886111, 24154953, 65659969, 178482301, 485165195, 1318815734, 3584912846, 9744803446, 26489122130, 72004899337, 195729609429, 532048240602, 1446257064291, 3931334297144, 10686474581524
Offset: 0

Views

Author

Keywords

Comments

x = e^n is the location of the maximum of x^(1/x^(1/n)). One can define another sequence, c(n) as the value of the natural number k that maximizes k^(1/k^(1/n)). Empirically, despite the rounding, c(n) and a(n) match each other until at least n>24500 (see the link). - Stanislav Sykora, Jun 06 2014

References

  • Federal Works Agency, Work Projects Administration for the City of NY, Tables of the Exponential Function. National Bureau of Standards, Washington, DC, 1939.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 230.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000149 (floor e^n), A001671 (e^n rounded up), A002160 (nearest integer to Pi^n).

Programs

  • Maple
    Digits := 40: [seq(round(exp(n)), n=0..30)];
  • Mathematica
    Table[ Round[ N[E^n] ], {n, 0, 30} ]
    Round[E^Range[0,30]] (* Harvey P. Dale, Jul 28 2025 *)
  • PARI
    apply( A000227(n)=exp(n)\/1, [0..50]) \\ An error message will say so if default(realprecision) must be increased. - M. F. Hasler, May 27 2018

A079490 Exp(n) is closer to an integer than any previous exp(k) for 1 <= k < n.

Original entry on oeis.org

1, 3, 8, 19, 45, 75, 135, 178, 209, 732, 1351, 1907, 5469, 28414, 37373, 404055, 902497
Offset: 1

Views

Author

Donald S. McDonald, Jan 20 2003

Keywords

Examples

			a(2) = 3: exp(3) = 20.08... is closer to an integer than exp(1) = 2.718...
At 37373 the difference from an integer is 0.0000010493779591646530966...
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 178, p. 56, Ellipses, Paris 2008.

Crossrefs

Programs

  • Mathematica
    a = 1; Do[ d = Abs[ Round[E^n] - N[E^n, Ceiling[ Log[10, E^n] + 10]]]; If[d < a, Print[n]; a = d], {n, 1, 50000}]
  • PARI
    {default(realprecision,1000); d(x)=abs(x-round(x))}; a(n)=local(m); if(n<2,n>0,n=a(n-1); m=d(exp(n)); until(d(exp(n))
    				
  • PARI
    d(x)=x=frac(x); min(x,1-x)
    D(n)=localbitprec(n/log(2)+99); d(exp(n))
    r=1; for(n=1,4e4, t=D(n); if(tCharles R Greathouse IV, Oct 31 2022

Extensions

Corrected and extended to 1351 by several correspondents, Jan 20 2003
a(12)-a(15) from Robert G. Wilson v, Jan 20 2003
a(16)-a(17) from Charles R Greathouse IV, Nov 01 2022

A001671 Powers of e rounded up.

Original entry on oeis.org

1, 3, 8, 21, 55, 149, 404, 1097, 2981, 8104, 22027, 59875, 162755, 442414, 1202605, 3269018, 8886111, 24154953, 65659970, 178482301, 485165196, 1318815735, 3584912847, 9744803447, 26489122130, 72004899338, 195729609429, 532048240602, 1446257064292, 3931334297145, 10686474581525
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000149 (floor(e^n)), A000227 (round(e^n)).

Programs

  • Mathematica
    Table[Ceiling[E^n], {n, 0, 50}] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    apply( A001671(n)=exp(n)\1+!!n, [0..30]) \\ An error message will say so if default(realprecision) must be increased, for large n. - M. F. Hasler, May 27 2018

A153701 Minimal exponents m such that the fractional part of e^m obtains a minimum (when starting with m=1).

Original entry on oeis.org

1, 2, 3, 9, 29, 45, 75, 135, 219, 732, 1351, 3315, 4795, 4920, 5469, 28414, 37373
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Recursive definition: a(1)=1, a(n) = least number m>a(n-1) such that the fractional part of e^m is less than the fractional part of e^k for all k, 1<=k
The next such number must be greater than 100000.
a(18) > 300,000. Robert Price, Mar 23 2019

Examples

			a(4)=9, since fract(e^9)=0.08392..., but fract(e^k)>=0.08553... for 1<=k<=8; thus fract(e^9)<fract(e^k) for 1<=k<9.
		

Programs

  • Mathematica
    $MaxExtraPrecision = 100000;
    p = 1; Select[Range[1, 300000],
    If[FractionalPart[E^#] < p, p = FractionalPart[E^#]; True] &] (* Robert Price, Mar 23 2019 *)

Formula

Recursion: a(1):=1, a(k):=min{ m>1 | fract(e^m) < fract(e^a(k-1))}, where fract(x) = x-floor(x).

A153702 Numbers k such that the fractional part of e^k is less than 1/k.

Original entry on oeis.org

1, 2, 3, 9, 732, 5469, 28414, 37373, 93638, 136986, 192897
Offset: 1

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Numbers k such that fract(e^k) < 1/k, where fract(x) = x-floor(x).
The next such number must be greater than 100000.
a(12) > 300000. - Robert Price, Mar 23 2019

Examples

			a(4) = 9 since fract(e^9) = 0.08392... < 1/9, but fract(e^k) = 0.598..., 0.413..., 0.428..., 0.633..., 0.957... for 4 <= k <= 8, which are all greater than 1/k.
		

Programs

  • Mathematica
    Select[Range[1000], FractionalPart[E^#] < (1/#) &] (* G. C. Greubel, Aug 24 2016 *)

Extensions

a(10)-a(11) from Robert Price, Mar 23 2019

A153704 Numbers k such that the fractional part of e^k is greater than 1-(1/k).

Original entry on oeis.org

1, 8, 19, 178, 209, 1907, 32653, 119136, 220010
Offset: 1

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Numbers k such that fract(e^k) > 1-(1/k), where fract(x) = x-floor(x).
The next such number must be greater than 100000.
a(10) > 300,000. Robert Price, Mar 23 2019

Examples

			a(2)=8, since fract(e^8) = 0.957987... >0.875 = 1-(1/8), but fract(e^k) = 0.389..., 0.085..., 0.598..., 0.413..., 0.428..., 0.633... for 2<=k<=7 which all are less than 1-(1/k).
		

Programs

  • Mathematica
    Select[Range[2000], N[FractionalPart[E^#], 1000] >= 1 - (1/#) &] (* G. C. Greubel, Aug 25 2016 *)

Extensions

a(8)-a(9) from Robert Price, Mar 23 2019

A040014 Number of primes < e^n.

Original entry on oeis.org

0, 1, 4, 8, 16, 34, 79, 183, 429, 1019, 2466, 6048, 14912, 37128, 93117, 234855, 595341, 1516233, 3877186, 9950346, 25614562, 66124777, 171141897, 443963543, 1154106844, 3005936865, 7842921261, 20496470801, 53645077679, 140599114669, 368973074565, 969455391690, 2550043255883
Offset: 0

Author

Keywords

Comments

a(n) = A000720(A000149(n)). - Reinhard Zumkeller, Mar 17 2015

Crossrefs

Programs

  • Haskell
    a040014 = a000720 . a000149  -- Reinhard Zumkeller, Mar 17 2015
  • Mathematica
    Table[PrimePi[Exp[n]], {n, 0, 33}]

Extensions

a(27)-a(29) from Robert G. Wilson v, Jun 09 2000
a(30)-a(32) from Seiichi Manyama, May 04 2016

A050808 Numbers k such that floor(exp(k)) is prime.

Original entry on oeis.org

1, 2, 18, 50, 127, 141, 267, 310, 2290, 4487, 5391, 14025
Offset: 1

Author

Patrick De Geest, Oct 15 1999

Keywords

Crossrefs

Cf. A050809 (the actual primes), A000149, A040016, A037028, A000227, A004791, A059791, A059792.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ Floor[ \[ExponentialE]^n] ], Print[n] ], {n, 0, 4750} ]
    Select[Range[15000],PrimeQ[Floor[Exp[#]]]&] (* Harvey P. Dale, Oct 16 2012 *)
  • PARI
    is(n)=ispseudoprime(exp(n)\1) \\ Charles R Greathouse IV, Jan 03 2014

Extensions

Corrected by Naohiro Nomoto, Feb 22 2001
More terms from Vladeta Jovovic, Feb 24 2001
More terms from Robert G. Wilson v, May 09 2001
a(11) = 5391 from Eric W. Weisstein, May 01 2006
a(12) from Donovan Johnson, Feb 04 2008
Showing 1-10 of 43 results. Next