cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A050809 Primes of the form floor( exp(k) ).

Original entry on oeis.org

2, 7, 65659969, 5184705528587072464087, 14302079958348104463583671072905261080748384225250684971, 17199742630376622641833783925547830057256484050709158699244513
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Examples

			a(3) = floor(e^18) = 65659969, which is prime.
		

Crossrefs

Cf. A050808 (values of k), A000149, A040016, A037028, A000227, A004791.

Programs

  • Mathematica
    Select[Table[Floor[Exp[n]], {n, 150}], PrimeQ] (* Jayanta Basu, Jun 01 2013 *)

Extensions

Corrected by Naohiro Nomoto, Feb 22 2001

A059303 Numbers k such that floor(e^k) + 1 is prime.

Original entry on oeis.org

0, 1, 5, 7, 10, 105, 22959, 34888
Offset: 1

Views

Author

Felice Russo, Jan 25 2001

Keywords

Comments

0 followed by all k such that ceiling(e^k) is prime. - Jeppe Stig Nielsen, Feb 12 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[40000], PrimeQ[Floor[E^#] + 1] &] (* G. C. Greubel, Jan 06 2017 *)
  • PARI
    isok(k) = isprime(floor(exp(k))+1) \\ Michel Marcus, Jun 08 2013

Extensions

Corrected by Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
a(7)-a(8) from Donovan Johnson

A040016 Largest prime < e^n.

Original entry on oeis.org

2, 7, 19, 53, 139, 401, 1093, 2971, 8101, 22013, 59863, 162751, 442399, 1202603, 3269011, 8886109, 24154939, 65659969, 178482289, 485165141, 1318815713, 3584912833, 9744803443, 26489122081, 72004899319, 195729609407, 532048240573, 1446257064289, 3931334297131
Offset: 1

Views

Author

Keywords

Comments

A050809 is a subset. Lim_{n --> infinity} a(n+1)/a(n) = e. - Jonathan Vos Post, May 02 2006

Examples

			a(20) = floor(e^20) - 54 = 485165195 - 54 = 485165141 as there are no primes p such that 485165141 < p < 485165195.
		

Crossrefs

Programs

Extensions

Edited by N. J. A. Sloane, Dec 22 2006
a(27)-a(29) from Giovanni Resta, Apr 29 2017

A113887 Numbers n such that floor(exp(sqrt(n))) is a prime number.

Original entry on oeis.org

1, 3, 4, 6, 10, 12, 17, 21, 26, 30, 53, 54, 58, 83, 95, 109, 111, 128, 131, 137, 145, 157, 165, 166, 181, 195, 202, 244, 261, 265, 290, 306, 324, 343, 353, 369, 386, 415, 417, 418, 438, 468, 473, 503, 633, 704, 735, 758, 859, 903, 919, 955, 979, 987, 1008, 1016
Offset: 1

Views

Author

Stefan Steinerberger, Jan 28 2006

Keywords

Crossrefs

Cf. A050808.

Programs

Extensions

More terms from Robert G. Wilson v, Jan 30 2006

A117879 First semiprime after e^n.

Original entry on oeis.org

4, 4, 9, 21, 55, 155, 407, 1099, 2981, 8105, 22033, 59881, 162757, 442417, 1202611, 3269021, 8886117, 24154953, 65659981, 178482301, 485165203, 1318815739, 3584912849, 9744803447, 26489122131, 72004899341, 195729609431
Offset: 0

Views

Author

Jonathan Vos Post, May 02 2006

Keywords

Comments

Semiprime analog of A074496 = first prime after e^n. Lim_{n->infinity} a(n+1)/a(n) = e. There are numbers where floor(e^n) is itself a semiprime, as with floor(e^6) = 403 = 13 * 31, floor(e^15) = 3269017 = 773 * 4229, floor(e^20) = 485165195 = 5 * 97033039, floor(e^22) = 3584912846 = 2 * 1792456423, floor(e^24) = 26489122129 = 103 * 257175943.

Crossrefs

Programs

  • Mathematica
    fsa[n_]:=Module[{i=1,c=Floor[E^n]},While[PrimeOmega[c+i]!=2,i++];c+i]; Array[fsa,30,0] (* Harvey P. Dale, Oct 18 2013 *)

Formula

a(n) = Smallest semiprime > e^n. Smallest semiprime > floor(e^n). a(n) = min{s > A000149(n) and s in A001358}.

A074221 Numbers k such that floor(k^e) is prime.

Original entry on oeis.org

3, 4, 5, 11, 22, 26, 32, 42, 44, 45, 84, 95, 97, 165, 183, 198, 200, 201, 204, 214, 235, 247, 258, 260, 267, 294, 310, 365, 381, 387, 389, 393, 442, 456, 463, 507, 543, 544, 551, 588, 609, 628, 676, 693, 718, 729, 736, 755, 767, 795, 810, 842, 865, 877, 885
Offset: 0

Views

Author

Jon Perry, Sep 17 2002

Keywords

Examples

			Floor(3^e) = 19.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],PrimeQ[Floor[#^E]]&] (* Harvey P. Dale, Jul 21 2013 *)

A117881 First semiprime after Pi^n.

Original entry on oeis.org

4, 4, 10, 33, 106, 309, 965, 3022, 9489, 29813, 93649, 294209, 924271, 2903678, 9122173, 28658147, 90032221, 282844574, 888582413, 2791563955, 8769956797, 27551631845, 86556004193, 271923706897, 854273519921, 2683779414319
Offset: 0

Views

Author

Jonathan Vos Post, May 02 2006

Keywords

Comments

Pi and semiprime analog of A074496 First prime after e^n. Lim_{n->infinity} a(n+1)/a(n) = Pi. See also A000796 Decimal expansion of Pi. There are numbers where floor(Pi^n) is itself a semiprime, as with floor(Pi^2) = 9, floor(Pi^6) = 961 = 31^2, floor(Pi^9) = 29809 = 13 * 2293, floor(Pi^25) = 2683779414317 = 5749 * 466825433.

Examples

			a(3) = 33 because Pi^3 = 31.0062766... floor(Pi^3) = 31 is prime hence 31 + 2 = 33 is a term.
		

Crossrefs

Programs

  • Mathematica
    fsp[n_]:=Module[{k=Ceiling[Pi^n]},While[PrimeOmega[k]!=2,k++];k]; Array[fsp,30,0]

Formula

a(n) = min{s in A001358 and s > Pi^n}.

A370305 Numbers k such that the distance from exp(k) to the closest average of two consecutive primes is less than 1.

Original entry on oeis.org

1, 3, 16, 61, 74, 91, 113, 1441, 1566, 2170, 2499
Offset: 1

Views

Author

Jeppe Stig Nielsen, Feb 14 2024

Keywords

Comments

Explicitly, abs( e^k - (prevprime(e^k)+nextprime(e^k))/2 ) < 1.
For k>1, the formula (prevprime(e^k)+nextprime(e^k))/2 either gives floor(e^k), for k = 61, 74, 2170, ..., or gives ceiling(e^k), for k = 3, 16, 91, 113, 1441, 1566, 2499, ... This partitions {a(n)}\{1} into two subsequences each of which can be conjectured to have relative density 1/2.
In cases k = 16, 61, 113, 2499, ... the distance is actually less than 0.5. Then the formula (prevprime(e^k)+nextprime(e^k))/2 yields round(e^k), the nearest integer to e^k.

Examples

			For k=16, e^16 is about 8886110.52. The next prime is 8886113, and the previous prime is 8886109, and their average 8886111 is at a distance of about 0.48 away from e^16.
		

Crossrefs

Programs

  • PARI
    default(realprecision,2000);for(k=1,+oo,r=exp(k);abs(r-(precprime(r)+nextprime(r))/2)<1&&print1(k,", "))
Showing 1-8 of 8 results.