A077548 Duplicate of A050809.
2, 7, 65659969, 5184705528587072464087
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Do[ If[ PrimeQ[ Floor[ \[ExponentialE]^n] ], Print[n] ], {n, 0, 4750} ] Select[Range[15000],PrimeQ[Floor[Exp[#]]]&] (* Harvey P. Dale, Oct 16 2012 *)
is(n)=ispseudoprime(exp(n)\1) \\ Charles R Greathouse IV, Jan 03 2014
a(20) = floor(e^20) - 54 = 485165195 - 54 = 485165141 as there are no primes p such that 485165141 < p < 485165195.
Table[NextPrime[E^n,-1],{n,30}] (* Harvey P. Dale, Jul 24 2016 *)
a(n)=precprime(exp(n)) \\ Charles R Greathouse IV, Mar 26 2013
fsa[n_]:=Module[{i=1,c=Floor[E^n]},While[PrimeOmega[c+i]!=2,i++];c+i]; Array[fsa,30,0] (* Harvey P. Dale, Oct 18 2013 *)
a(3) = 33 because Pi^3 = 31.0062766... floor(Pi^3) = 31 is prime hence 31 + 2 = 33 is a term.
fsp[n_]:=Module[{k=Ceiling[Pi^n]},While[PrimeOmega[k]!=2,k++];k]; Array[fsp,30,0]
Comments