cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006880 Number of primes < 10^n.

Original entry on oeis.org

0, 4, 25, 168, 1229, 9592, 78498, 664579, 5761455, 50847534, 455052511, 4118054813, 37607912018, 346065536839, 3204941750802, 29844570422669, 279238341033925, 2623557157654233, 24739954287740860, 234057667276344607, 2220819602560918840, 21127269486018731928, 201467286689315906290
Offset: 0

Views

Author

Keywords

Comments

Number of primes with at most n digits; or pi(10^n).
Partial sums of A006879. - Lekraj Beedassy, Jun 25 2004
Also omega( (10^n)! ), where omega(x): number of distinct prime divisors of x. - Cino Hilliard, Jul 04 2007
This sequence also gives a good approximation for the sum of primes less than 10^(n/2). This is evident from the fact that the number of primes less than 10^2n closely approximates the sum of primes less than 10^n. See link on Sum of Primes for the derivation. - Cino Hilliard, Jun 08 2008
It appears that (10^n)/log((n+3)!) is a lower bound close to a(n), see A025201. - Eric Desbiaux, Jul 20 2010, edited by M. F. Hasler, Dec 03 2018

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 143, 146.
  • Richard Crandall and Carl B. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; p. 11.
  • Keith Devlin, Mathematics: The New Golden Age, new and revised edition. New York: Columbia University Press (1993): p. 6, Table 1.
  • Marcus du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; p. 48.
  • Calvin T. Long, Elementary Introduction to Number Theory. Prentice-Hall, Englewood Cliffs, NJ, 1987, p. 77.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 179.
  • H. Riesel, "Prime numbers and computer methods for factorization," Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, page 38.
  • D. Shanks, Solved and Unsolved Problems in Number Theory. Chelsea, NY, 2nd edition, 1978, p. 15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 455052511 at p. 190.

Crossrefs

Programs

Formula

a(n) = A000720(10^n). - M. F. Hasler, Dec 03 2018
Limit_{n->oo} a(n)/a(n-1) = 10. - Stefano Spezia, Aug 31 2025

Extensions

Lehmer gave the incorrect value 455052512 for the 10th term. More terms May 1996. Jud McCranie points out that the 11th term is not 4188054813 but rather 4118054813.
a(22) from Robert G. Wilson v, Sep 04 2001
a(23) (see Gourdon and Sebah) has yet to be verified and the assumed error is +-1. - Robert G. Wilson v, Jul 10 2002 [The actual error was 14037804. - N. J. A. Sloane, Nov 28 2007]
a(23) corrected by N. J. A. Sloane from the web page of Tomás Oliveira e Silva, Nov 28 2007
a(25) from J. Buethe, J. Franke, A. Jost, T. Kleinjung, Jun 01 2013, who said: "We have calculated pi(10^25) = 176846309399143769411680 unconditionally, using an analytic method based on Weil's explicit formula".
a(26) from Douglas B. Staple, Dec 02 2014
a(27) in the b-file from David Baugh and Kim Walisch via Charles R Greathouse IV, Jun 01 2016
a(28) in the b-file from David Baugh and Kim Walisch, Oct 26 2020
a(29) in the b-file from David Baugh and Kim Walisch, Feb 28 2022

A061273 Number of primes between successive powers of e (= 2.718281828...).

Original entry on oeis.org

1, 3, 4, 8, 18, 45, 104, 246, 590, 1447, 3582, 8864, 22216, 55989, 141738, 360486, 920892, 2360953, 6073160, 15664216, 40510215, 105017120, 272821646, 710143301, 1851830021, 4836984396, 12653549540, 33148606878, 86954036990, 228373959896, 600482317125, 1580587864193, 4164596465439, 10983396620288
Offset: 0

Views

Author

Amarnath Murthy, Apr 25 2001

Keywords

Examples

			a(0) = 1 as 2 is the only between 1 and e. a(4) = 18, as there are 18 primes between e^4 = 54.59815... and e^5 = 148.4131591...
		

Crossrefs

Cf. A061274.
First differences of A040014.

Programs

  • Maple
    # To find all primes between ceiling(base^(n-1)) and floor(base^n). This uses the Maple function 'isprime', which is a probabilistic primality testing routine.
    base := exp(1); maxx := 15; for n from 1 to maxx do for i from ceil(base^(n-1)) to floor(base^(n)) do if (isprime(i)) then numPrimes := numPrimes + 1: end if; od; printf("Number of primes between ceil(%f)^%d and floor(%f)^%d is %d ", base, n-1, base, n, numPrimes); od; # Winston C. Yang (winston(AT)cs.wisc.edu), May 17 2001
  • Mathematica
    Differences[PrimePi[#]&/@(E^Range[0,35])] (* Harvey P. Dale, May 03 2023 *)

Formula

a(n) ~ 1/n * e^n * (e-1).

Extensions

More terms from Winston C. Yang (winston(AT)cs.wisc.edu), May 17 2001
a(29)-a(33) from Robert G. Wilson v, Jun 05 2016

A105457 Number of irregular primes less than e^n.

Original entry on oeis.org

0, 0, 0, 1, 6, 21, 66, 170, 404, 984, 2384, 5877, 14459, 36720, 92657, 234376, 597082, 1525209, 3913689, 10076194, 26016985
Offset: 1

Views

Author

Robert G. Wilson v, Apr 07 2005

Keywords

Crossrefs

Programs

  • Mathematica
    ip={ the list of irregular primes to 12 million }; Table[ Length[ Select[ip, # < E^n &]], {n, 16}]

Extensions

a(16) corrected and a(17)-a(21) added by Amiram Eldar, Mar 05 2019

A055730 Number of primes <= 5^n.

Original entry on oeis.org

0, 3, 9, 30, 114, 445, 1821, 7671, 33118, 145713, 650133, 2934858, 13375865, 61444585, 284140656, 1321453490, 6175961983, 28988040005, 136575061279, 645620925545, 3061129684411, 14552990145243, 69354801708586, 331251325552977, 1585299642009257, 7600886353341754, 36504944044424979
Offset: 0

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[5^n], {n, 0, 19}]
  • PARI
    a(n) = primepi(5^n); \\ Michel Marcus, Aug 25 2014

Formula

a(n) = A000720(A000351(n)). - Michel Marcus, Aug 25 2014

Extensions

a(19) corrected by Henri Lifchitz, Nov 11 2012
a(20)-a(27) from Henri Lifchitz, Nov 11 2012
a(28)-a(32) from Henri Lifchitz, Aug 25 2014
Definition corrected by Jean-Claude Arbaut, Oct 07 2015
a(33) from Robert Price, May 07 2025

A055731 Number of primes < 6^n.

Original entry on oeis.org

0, 3, 11, 47, 210, 985, 4821, 24427, 126726, 669432, 3588148, 19453038, 106460872, 587176205, 3259873268, 18200088376, 102107048666, 575281018454, 3253321522134, 18459252891532, 105048100696856, 599403542263094, 3428437672359713, 19652744592040804, 112879982373565581, 649538196329702877, 3743885544339750283, 21612949469350359942, 124947894360104092955
Offset: 0

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[6^n], {n, 0, 17}]
  • PARI
    a(n) = primepi(6^n); \\ Michel Marcus, Oct 05 2020

Formula

a(n) = A000720(A000400(n)). - Michel Marcus, Oct 05 2020

Extensions

a(18)-a(24) from Henri Lifchitz, Nov 11 2012
a(25)-a(28) from Henri Lifchitz, Aug 25 2014

A055732 Number of primes <= 7^n.

Original entry on oeis.org

0, 4, 15, 68, 357, 1939, 11098, 65685, 397764, 2453911, 15353323, 97163605, 620646217, 3995149838, 25885182840, 168650876819, 1104127111380, 7259025764932, 47901523494261, 317140339436292, 2105877503513609, 14020561559878216, 93570332318306847, 625829902867176558, 4194084944321575624, 28158446635057280702, 189368274899202732322
Offset: 0

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[7^n], {n, 0, 16}]
  • PARI
    a(n) = primepi(7^n); \\ Michel Marcus, Aug 25 2014

Formula

a(n) = A000720(A000420(n)). - Michel Marcus, Aug 25 2014

Extensions

a(17)-a(22) from Henri Lifchitz, Nov 11 2012
a(23)-a(26) from Henri Lifchitz, Aug 25 2014

A182564 Number of primes < Fibonacci(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 5, 8, 11, 16, 23, 34, 50, 74, 111, 166, 250, 376, 574, 871, 1329, 2033, 3120, 4794, 7396, 11425, 17688, 27426, 42612, 66317, 103298, 161207, 251757, 393790, 616645, 966507, 1516410, 2381429, 3743010, 5888201, 9269519, 14604028, 23023555, 36322186, 57337078, 90565070, 143130478
Offset: 0

Views

Author

Alex Ratushnyak, May 05 2012

Keywords

Examples

			Fibonacci(7)=13, there are 5 primes less than 13, so a(7)=5.
		

Crossrefs

Programs

  • Mathematica
    Table[If[PrimeQ[Fibonacci[n]],PrimePi[Fibonacci[n]-1],PrimePi[ Fibonacci[ n]]],{n,0,50}] (* Harvey P. Dale, Feb 12 2022 *)
  • PARI
    a(n) = primepi(fibonacci(n)-1) \\ Michel Marcus, May 13 2013

A229661 Rounded percentage of primes less than 10^n.

Original entry on oeis.org

0, 40, 25, 17, 12, 10, 8, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Jean-François Alcover, Sep 27 2013

Keywords

Comments

Please refer to the explanations and comments given in A006879 and A006880.

Examples

			There are 4 primes less than 10 (i.e., 2, 3, 5, 7), so a(1) = 40.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimePi[10^n]/10^(n-2) // Round;
    (* or *) a[n_] := A006880[[n+1]]/10^(n-2) // Round; Table[Print["10^", n, " ", a[n], "%"]; a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 27 2013 *)

Formula

a(n) = pi(10^n)/10^(n-2) rounded.
Showing 1-8 of 8 results.