A179279 Composite numbers k such that (Bell(k+1) - Bell(k)) mod k = 1.
4, 28, 40, 343, 10744, 18506, 18658, 22360, 34486, 289912, 293710, 565213, 722765, 2469287, 13231942, 86523219
Offset: 1
Examples
For k=4, (Bell(5) - Bell(4)) mod 4 = (52 - 15) mod 4 = 37 mod 4 = 1, but 4 is not prime, so 4 is a term.
Programs
-
Mathematica
fQ[n_] := ! PrimeQ@n && Mod[BellB[n + 1] - BellB[n], n] == 1; k = 1; lst = {}; While[k < 9201, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Jul 28 2010 *)
Extensions
a(5)-a(9) from Giovanni Resta, Aug 26 2018
a(10)-a(16) from Hiroaki Yamanouchi, Sep 01 2018
Comments