cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A057219 {e^n}-th prime, where {e^n} is closest integer to e^n, A000227.

Original entry on oeis.org

2, 5, 17, 71, 257, 857, 2767, 8807, 27239, 82939, 249779, 744949, 2201281, 6463081, 18858529, 54764947, 158330587, 456016949, 1309050653, 3746543951, 10694444393, 30453898201, 86534078387, 245401348403, 694683409451
Offset: 0

Views

Author

Robert G. Wilson v, Sep 16 2000

Keywords

Crossrefs

Cf. A000227.

Programs

  • Mathematica
    Table[ Prime[ Round[ N[ E^n ] ] ], {n, 0, 27} ]

A000149 a(n) = floor(e^n).

Original entry on oeis.org

1, 2, 7, 20, 54, 148, 403, 1096, 2980, 8103, 22026, 59874, 162754, 442413, 1202604, 3269017, 8886110, 24154952, 65659969, 178482300, 485165195, 1318815734, 3584912846, 9744803446, 26489122129, 72004899337, 195729609428, 532048240601, 1446257064291
Offset: 0

Views

Author

Keywords

Comments

A000079(n) <= a(n) <= A000244(n); for n > 0: A064780(n) = a(n+1) - a(n). - Reinhard Zumkeller, Mar 17 2015
Satisfies Benford's law [Whyman et al., 2016]. - N. J. A. Sloane, Feb 12 2017

References

  • Federal Works Agency, Work Projects Administration for the City of NY, Tables of the Exponential Function. National Bureau of Standards, Washington, DC, 1939.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 230.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection: A116472.
Cf. A001113, A003619, A000079, A000244, A064780 (first differences, apart from initial term).
Cf. A000227 (round e^n), A001671 (ceiling e^n).

Programs

  • Haskell
    a000149 = floor . (exp 1 ^)
    a000149_list = let e = exp 1 in map floor $ iterate (* e) 1
    -- Reinhard Zumkeller, Mar 17 2015
    
  • Mathematica
    a[n_]:=Floor[E^n]; (* Vladimir Joseph Stephan Orlovsky, Dec 12 2008 *)
    Floor[E^Range[0,30]] (* Harvey P. Dale, Apr 01 2012 *)
  • PARI
    a(n) = floor(exp(n)); \\ Arkadiusz Wesolowski, Nov 26 2011
    
  • PARI
    apply( A000149(n)=exp(n)\1, [0..30]) \\ An error message will say so if default(realprecision) must be increased, for large n. - M. F. Hasler, May 27 2018
    
  • Python
    from sympy import floor, E
    def a(n):  return floor(E**n)
    print([a(n) for n in range(29)]) # Michael S. Branicky, Jul 20 2021

Formula

a(n)^(1/n) converges to e because |1-a(n)/e^n|=|e^n-a(n)|/e^n < e^(-n) and so a(n)^(1/n)=(e^n*(1+o(1)))^(1/n)=e*(1+o(1)). - Hieronymus Fischer, Jan 22 2006

A002581 Decimal expansion of cube root of 3.

Original entry on oeis.org

1, 4, 4, 2, 2, 4, 9, 5, 7, 0, 3, 0, 7, 4, 0, 8, 3, 8, 2, 3, 2, 1, 6, 3, 8, 3, 1, 0, 7, 8, 0, 1, 0, 9, 5, 8, 8, 3, 9, 1, 8, 6, 9, 2, 5, 3, 4, 9, 9, 3, 5, 0, 5, 7, 7, 5, 4, 6, 4, 1, 6, 1, 9, 4, 5, 4, 1, 6, 8, 7, 5, 9, 6, 8, 2, 9, 9, 9, 7, 3, 3, 9, 8, 5, 4, 7, 5, 5, 4, 7, 9, 7, 0, 5, 6, 4, 5, 2, 5, 6, 6, 8, 6, 8, 3, 5, 0, 8
Offset: 1

Views

Author

Keywords

Comments

The largest k^(1/k), for any natural number k, occurs when k = 3 = A000227(1). - Stanislav Sykora, Jun 04 2014
3^(1/3) is also the Kolmogorov constant C(3,2) in the case supremum norm on the real line. - Jean-François Alcover, Jul 17 2014
(1/3)*log(3) = -lim_{n->oo} (n-th derivative zeta(n+1)) / ((n-1)-th derivative zeta(n)) = 0.3662040962227... Convergence is to 25 digits by n = ~1000. zeta is the Riemann zeta function. - Richard R. Forberg, Feb 24 2015

Examples

			1.442249570307408382321638310780109588391869253499350577546416...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Horace S. Uhler, Many-figure approximations for cube root of 2, cube root of 3, cube root of 4 and cube root of 9 with chi_2 data, Scripta Math. 18, (1952), 173-176.

Crossrefs

Cf. A002946 (continued fraction).

Programs

  • Mathematica
    RealDigits[N[3^(1/3), 200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    default(realprecision, 20080); x=3^(1/3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002581.txt", n, " ", d));  \\ Harry J. Smith, May 07 2009

Formula

3^(1/3) >= min(k^(1/m), m^(1/k)) for any positive integers k and m (Pollard, 1969). - Amiram Eldar, Feb 14 2025

A001671 Powers of e rounded up.

Original entry on oeis.org

1, 3, 8, 21, 55, 149, 404, 1097, 2981, 8104, 22027, 59875, 162755, 442414, 1202605, 3269018, 8886111, 24154953, 65659970, 178482301, 485165196, 1318815735, 3584912847, 9744803447, 26489122130, 72004899338, 195729609429, 532048240602, 1446257064292, 3931334297145, 10686474581525
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000149 (floor(e^n)), A000227 (round(e^n)).

Programs

  • Mathematica
    Table[Ceiling[E^n], {n, 0, 50}] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    apply( A001671(n)=exp(n)\1+!!n, [0..30]) \\ An error message will say so if default(realprecision) must be increased, for large n. - M. F. Hasler, May 27 2018

A002160 Nearest integer to Pi^n.

Original entry on oeis.org

1, 3, 10, 31, 97, 306, 961, 3020, 9489, 29809, 93648, 294204, 924269, 2903677, 9122171, 28658146, 90032221, 282844564, 888582403, 2791563950, 8769956796, 27551631843, 86556004192, 271923706894, 854273519914, 2683779414318, 8431341691876, 26487841119104, 83214007069230
Offset: 0

Views

Author

Keywords

Examples

			a(0) = 1 because Pi^0 = 1;
a(2) = 10 because Pi^2 = 9.8696...;
a(10) = 93648 because Pi^10 = 93648.047476...
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 122.
  • J. T. Peters, Ten-Place Logarithm Table. Vols. 1 and 2, rev. ed. Ungar, NY, 1957, Vol. 1 (Appendix), p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000227 (e^n), A001672 (floor(Pi^n)), A001673 (ceiling(Pi^n)).

Programs

  • Maple
    a := []: Digits := 1000: for n from 0 to 50 do: a := [op(a),round(Pi^n)]: od: seq(a[i+1],i=0..50);
  • Mathematica
    Round[Pi^Range[0,40]] (* Harvey P. Dale, Jun 10 2024 *)
  • PARI
    apply( A002160(n)=Pi^n\/1, [0..50]) \\ An error message will say so if default(realprecision) must be increased. - M. F. Hasler, May 27 2018
    
  • Sage
    [round(pi^n) for n in range(0,29)] # Stefano Spezia, Jan 15 2025

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 29 2003
Edited by M. F. Hasler, May 27 2018

A050808 Numbers k such that floor(exp(k)) is prime.

Original entry on oeis.org

1, 2, 18, 50, 127, 141, 267, 310, 2290, 4487, 5391, 14025
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Crossrefs

Cf. A050809 (the actual primes), A000149, A040016, A037028, A000227, A004791, A059791, A059792.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ Floor[ \[ExponentialE]^n] ], Print[n] ], {n, 0, 4750} ]
    Select[Range[15000],PrimeQ[Floor[Exp[#]]]&] (* Harvey P. Dale, Oct 16 2012 *)
  • PARI
    is(n)=ispseudoprime(exp(n)\1) \\ Charles R Greathouse IV, Jan 03 2014

Extensions

Corrected by Naohiro Nomoto, Feb 22 2001
More terms from Vladeta Jovovic, Feb 24 2001
More terms from Robert G. Wilson v, May 09 2001
a(11) = 5391 from Eric W. Weisstein, May 01 2006
a(12) from Donovan Johnson, Feb 04 2008

A050809 Primes of the form floor( exp(k) ).

Original entry on oeis.org

2, 7, 65659969, 5184705528587072464087, 14302079958348104463583671072905261080748384225250684971, 17199742630376622641833783925547830057256484050709158699244513
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Examples

			a(3) = floor(e^18) = 65659969, which is prime.
		

Crossrefs

Cf. A050808 (values of k), A000149, A040016, A037028, A000227, A004791.

Programs

  • Mathematica
    Select[Table[Floor[Exp[n]], {n, 150}], PrimeQ] (* Jayanta Basu, Jun 01 2013 *)

Extensions

Corrected by Naohiro Nomoto, Feb 22 2001

A001675 a(n) = round(sqrt( 2*Pi )^n).

Original entry on oeis.org

1, 3, 6, 16, 39, 99, 248, 622, 1559, 3907, 9793, 24546, 61529, 154230, 386598, 969056, 2429064, 6088760, 15262259, 38256810, 95895601, 240374624, 602529829, 1510318305, 3785806568, 9489609784, 23786924201, 59624976768, 149457652642, 374634777972
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001674 (floor sqrt(2 Pi)^n), A001698 (ceiling sqrt(2 Pi)^n).
Cf. A017911 (round sqrt(2)), A000227 (round e^n), A002160 (round Pi^n).

Programs

  • Mathematica
    Table[Floor[Sqrt[2*Pi]^n + 1/2], {n, 0, 50}] (* T. D. Noe, Aug 09 2012 *)
    Round[(Sqrt[2*Pi])^Range[0,30] ] (* Harvey P. Dale, Jun 05 2018 *)
  • PARI
    apply( a(n)=(2*Pi)^(n/2)\/1, [0..40]) \\ M. F. Hasler, May 29 2018

A243443 Decimal expansion of 7^(1/sqrt(7)).

Original entry on oeis.org

2, 0, 8, 6, 4, 9, 3, 4, 9, 6, 3, 0, 9, 3, 6, 4, 4, 2, 3, 1, 9, 1, 0, 1, 2, 0, 7, 8, 3, 3, 1, 8, 7, 4, 6, 4, 4, 7, 5, 9, 9, 1, 7, 8, 7, 1, 1, 8, 2, 4, 7, 7, 0, 4, 4, 3, 1, 1, 4, 8, 3, 4, 0, 3, 0, 7, 7, 1, 7, 6, 2, 4, 6, 5, 9, 9, 9, 6, 9, 6, 8, 9, 1, 7, 8, 2, 2, 6, 9, 7, 7, 1, 8, 1, 3, 1, 8, 9, 5, 0, 7, 0, 3, 4, 5
Offset: 1

Views

Author

Stanislav Sykora, Jun 05 2014

Keywords

Comments

The largest k^(1/sqrt(k)), for any natural number k, which occurs for k = 7 = A000227(2).

Examples

			2.086493496309364423191012078331874644759917871182477044311483403077176...
		

Crossrefs

Cf. A002581, A243406 (k=8), A243444 (k=6).

Programs

  • Mathematica
    RealDigits[7^(1/Sqrt[7]),10,120][[1]] (* Harvey P. Dale, Aug 17 2024 *)
  • PARI
    default(realprecision, 20080); 7.0^(1.0/sqrt(7.0));

A291210 Numbers k such that round(k*k^(1/k)) - round((k-1)*(k-1)^(1/(k-1))) > 1.

Original entry on oeis.org

2, 4, 10, 27, 80, 230, 644, 1780, 4879, 13315, 36261, 98650, 268260, 729326, 1982655, 5389579, 14650584, 39824632, 108254817, 294267376, 799901968, 2174359323, 5910521810, 16066464445, 43673178798, 118716008808, 322703570021, 877199250941
Offset: 1

Views

Author

Hugo Pfoertner, Aug 21 2017

Keywords

Examples

			Let s(x) = x*x^(1/x); r(x) = round(s(x));
a(1) = 2:
  s(1) = 1,
  s(2) = 2.82842712474619...;
  r(1) = 1,
  r(2) = 3,
  r(2) - r(1) = 2;
a(2) = 4:
  s(3) = 4.32674871...,
  s(4) = 5.6568542...;
  r(3) = 4,
  r(4) = 6,
  r(4) - r(3) = 2;
...
a(19) = 108254817:
  s(108254816) = 108254834.49999999422...,
  s(108254817) = 108254835.50000000346...;
  r(108254816) = 108254834,
  r(108254817) = 108254836,
  r(108254817) - r(108254816) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Round[n*n^(1/n)]; g[k_] := f[k] > 1 + f[k-1]; A = Select[Range[2, 5000], g]; Do[AppendTo[A, SelectFirst[Floor[E Last@ A] + Range[1000], g]], {n, 19}]; A (* Giovanni Resta, Aug 21 2017 *)

Formula

Lim_{n->infinity} a(n)/a(n-1) = e.
It appears that, for most values of n, a(n) = floor(e^(n-1/2) + 7/8) - binomial(n,2). An exception occurs at n = 7; are there more? - Jon E. Schoenfield, Aug 22 2017
No more exceptions found through n = 30000. - Hugo Pfoertner, Aug 25 2017
Showing 1-10 of 13 results. Next