cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A210704 Primes formed by initial digits of 3^(1/3) = A002581, i.e., of the form floor[3^(1/3)*10^k].

Original entry on oeis.org

144224957030740838232163, 144224957030740838232163831078010958839186925349935057754641619454168759682999733
Offset: 1

Views

Author

M. F. Hasler, Aug 31 2013

Keywords

Comments

Inspired by prime curios about 4957 (cf. LINKS), one of which honors the late Bruce Murray, 30.11.1931 - 29.8.2013.
See A210706 for the k-values. The keyword "less" for this records means that the next term (2488 digits) cannot be added / displayed here, and instead of listing further primes here, the k-values should be recorded in A210706.

Crossrefs

Cf. A005042 (analog for Pi), A007512 (analog for e), A115453 (analog for sqrt(2)), A119343 (analog for sqrt(3)), A072952 (analog for gamma).

Programs

  • Mathematica
    With[{cr3=RealDigits[CubeRoot[3],10,100][[1]]},Select[Table[FromDigits[Take[cr3,n]],{n,100}],PrimeQ]] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    (c=sqrtn(3,3),v=1/*set to 0 for indices instead of values*/)->for(k=0,precision(c),ispseudoprime(p=c\.1^k)&&print1([k,p][1+v]","))

Formula

a(n) = floor[A002581 * 10^A210706(n)], where A002581 is taken as a constant.

A132480 Egyptian fraction representation for the cube root of 3.

Original entry on oeis.org

3, 10, 113, 14998, 256725552, 79495118506361081, 6480268330692915629803793658671757, 984530327504354982944576316519560092815242586628365115582359837408754
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Aug 23 2007

Keywords

Comments

Generated with Perl's Math::BigFloat module. Number of digits in terms is as follows: 1, 2, 3, 5, 9, 17, 34, 69, 139, 278, ...

Examples

			Fractional part of 3^(1/3) = 1/3 + 1/10 + 1/113 + ...
		

Crossrefs

Cf. A002581.

Programs

A002391 Decimal expansion of natural logarithm of 3.

Original entry on oeis.org

1, 0, 9, 8, 6, 1, 2, 2, 8, 8, 6, 6, 8, 1, 0, 9, 6, 9, 1, 3, 9, 5, 2, 4, 5, 2, 3, 6, 9, 2, 2, 5, 2, 5, 7, 0, 4, 6, 4, 7, 4, 9, 0, 5, 5, 7, 8, 2, 2, 7, 4, 9, 4, 5, 1, 7, 3, 4, 6, 9, 4, 3, 3, 3, 6, 3, 7, 4, 9, 4, 2, 9, 3, 2, 1, 8, 6, 0, 8, 9, 6, 6, 8, 7, 3, 6, 1, 5, 7, 5, 4, 8, 1, 3, 7, 3, 2, 0, 8, 8, 7, 8, 7, 9, 7
Offset: 1

Views

Author

Keywords

Examples

			1.098612288668109691395245236922525704647490557822749451734694333637494...
		

References

  • Calvin C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Springer, 2013. See p. 221.
  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A058962, A154920, A002162, A016731 (continued fraction), A073000, A105531, A254619.

Programs

  • Mathematica
    RealDigits[Log[3],10,120][[1]]  (* Harvey P. Dale, Apr 23 2011 *)
  • PARI
    log(3) \\ Charles R Greathouse IV, Jan 24 2012
    
  • Python
    # Use some guard digits when computing.
    # BBP formula P(1, 4, 2, (1, 0)).
    from decimal import Decimal as dec, getcontext
    def BBPlog3(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(4)
        for k in range(2 * n):
            s += f / dec(2 * k + 1)
            f /= g
        return s
    print(BBPlog3(200))  # Peter Luschny, Nov 03 2023

Formula

log(3) = Sum_{n>=1} (9*n-4)/((3*n-2)*(3*n-1)*3*n). [Jolley, Summation of Series, Dover (1961) eq 74]
log(3) = (1/4)*(1 + Sum_{m>=0} (1/9)^(k+1)*(27/(2*k+1) + 4/(2*k+2) + 1/(2*k+3))) (a BBP-type formula). - Alexander R. Povolotsky, Dec 01 2008
log(3) = 4/5 + (1/5)*Sum_{n>=0} (1/4)^n*(1/(2*n+1) + 1/(2*n+3)). - Alexander R. Povolotsky, Dec 18 2008
log(3) = Sum_{k>=0} (1/9)^(k+1)*(9/(2k+1) + 1/(2k+2)). - Jaume Oliver Lafont, Dec 22 2008
Sum_{i>=1} 1/(9^i*i) + Sum_{i>=0} 1/(9^i*(i+1/2)) = 2*log(3) (Huvent 2001). - Jaume Oliver Lafont, Oct 12 2009
Conjecture: log(3) = Sum_{k>=1} A191907(3,k)/k. - Mats Granvik, Jun 19 2011
log(3) = lim_{n->oo} Sum_{k=3^n..3^(n+1)-1} 1/k. Also see A002162. By analogy to the integral of 1/x, log(m) = lim_{n->oo} Sum_{k=m^n..m^(n+1)-1} 1/k, for any value of m > 1. - Richard R. Forberg, Aug 16 2014
From Peter Bala, Feb 04 2015: (Start)
log(3) = Sum {k >= 0} 1/((2*k + 1)*4^k).
Define a pair of integer sequences A(n) = 4^n*(2*n + 1)!/n! and B(n) = A(n)*Sum_{k = 0..n} 1/((2*k + 1)*4^k). Both sequences satisfy the same second-order recurrence equation u(n) = (20*n + 6)*u(n-1) - 16*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion log(3) = 1 + 2/(24 - 16*3^2/(46 - 16*5^2/(66 - ... - 16*(2*n - 1)^2/((20*n + 6) - ... )))). Cf. A002162, A073000 and A105531 for similar expansions.
log(3) = 2 * Sum_{k >= 1} (-1)^(k+1)*(4/3)^k/(k*binomial(2*k,k)).
log(3) = (1/4) * Sum_{k >= 1} (-1)^(k+1) (55*k - 23)*(8/9)^k/( 2*k*(2*k - 1)*binomial(3*k,k) ).
log(3) = (1/4) * Sum_{k >= 1} (7*k + 1)*(8/3)^k/( 2*k*(2*k - 1)*binomial(3*k,k) ). (End)
log(3) = -lim_{n->oo} (n+1)th derivative of zeta(n) / n-th derivative of zeta(n). By n = 1000 there is convergence to 25 digits. A related expression: lim_{n->oo} n-th derivative of zeta(n-1) / n-th derivative of zeta(n) = 3. Also see A002581. - Richard R. Forberg, Feb 24 2015
From Peter Bala, Nov 02 2019: (Start)
log(3) = 2*Integral_{x = 0..1} (1 - x^2)/(1 + x^2 + x^4) dx = 2*( 1 - (2/3) + 1/5 + 1/7 - (2/9) + 1/11 + 1/13 - (2/15) + ... ).
log(3) = 16*Sum_{n >= 0} 1/( (6*n + 1)*(6*n + 3)*(6*n + 5) ).
log(3) = 4/5 + 64*Sum_{n >= 0} (18*n + 1)/((6*n - 5)*(6*n - 3)*(6*n - 1)*(6*n + 1)*(6*n + 7)). (End)
From Amiram Eldar, Jul 05 2020: (Start)
Equals 2*arctanh(1/2).
Equals Sum_{k>=1} (2/3)^k/k.
Equals Integral_{x=0..Pi} sin(x)dx/(2 + cos(x)). (End)
log(3) = Integral_{x = 0..1} (x^2 - 1)/log(x) dx. - Peter Bala, Nov 14 2020
From Peter Bala, Oct 28 2023: (Start)
The series representation log(3) = 16*Sum_{n >= 0} 1/((6*n + 1)*(6*n + 3)*(6*n + 5)) given above appears to be the case k = 0 of the following infinite family of series representations for log(3):
log(3) = c(k) + (-1)^k*d(k)*Sum_{n >= 0} 1/((6*n + 1)*(6*n + 3)*...*(6*n + 12*k + 5)), where c(k) is a rational approximation to log(3) and d(k) = 2^(6*k+3)/27^k * (6*k + 2)!.
The first few values of c(k) for k >= 0 are [0, 2996/2673, 89195548/81236115, 23239436137364/21153065697225, 3345533089100222564/3045237239236561677, ...]. Cf A304656. (End)
log(3) = 1 + 2*Sum_{k>=1} 1/((3*k)^3 - 3*k) [Ramanujan]. - Stefano Spezia, Jul 01 2024

Extensions

Editing and more terms from Charles R Greathouse IV, Apr 20 2010

A002580 Decimal expansion of cube root of 2.

Original entry on oeis.org

1, 2, 5, 9, 9, 2, 1, 0, 4, 9, 8, 9, 4, 8, 7, 3, 1, 6, 4, 7, 6, 7, 2, 1, 0, 6, 0, 7, 2, 7, 8, 2, 2, 8, 3, 5, 0, 5, 7, 0, 2, 5, 1, 4, 6, 4, 7, 0, 1, 5, 0, 7, 9, 8, 0, 0, 8, 1, 9, 7, 5, 1, 1, 2, 1, 5, 5, 2, 9, 9, 6, 7, 6, 5, 1, 3, 9, 5, 9, 4, 8, 3, 7, 2, 9, 3, 9, 6, 5, 6, 2, 4, 3, 6, 2, 5, 5, 0, 9, 4, 1, 5, 4, 3, 1, 0, 2, 5
Offset: 1

Views

Author

Keywords

Comments

2^(1/3) is Hermite's constant gamma_3. - Jean-François Alcover, Sep 02 2014, after Steven Finch.
For doubling the cube using origami and a standard geometric construction employing two right angles see the W. Lang link, Application 2, p. 14, and the references given there. See also the L. Newton link. - Wolfdieter Lang, Sep 02 2014
Length of an edge of a cube with volume 2. - Jared Kish, Oct 16 2014
For any positive real c, the mappings R(x)=(c*x)^(1/4) and S(x)=sqrt(c/x) have the same unique attractor c^(1/3), to which their iterated applications converge from any complex plane point. The present case is obtained setting c=2. It is noteworthy that in this way one can evaluate cube roots using only square roots. The CROSSREFS list some other cases of cube roots to which this comment might apply. - Stanislav Sykora, Nov 11 2015
The cube root of any positive number can be connected to the Philo lines (or Philon lines) for a 90-degree angle. If the equation x^3-2 is represented using Lill's method, it can be shown that the path of the root 2^(1/3) creates the shortest segment (Philo line) from the x axis through (1,2) to the y axis. For more details see the article "Lill's method and the Philo Line for Right Angles" linked below. - Raul Prisacariu, Apr 06 2024

Examples

			1.2599210498948731647672106072782283505702514...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 192-193.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.4 Irrational Numbers and §12.3 Euclidean Construction, pp. 84, 421.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Horace S. Uhler, Many-figure approximations for cubed root of 2, cubed root of 3, cubed root of 4, and cubed root of 9 with chi2 data. Scripta Math. 18, (1952). 173-176.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, pp. 33-34.

Crossrefs

Cf. A002945 (continued fraction), A270714 (reciprocal), A253583.
Cf. A246644.

Programs

  • Maple
    Digits:=100: evalf(2^(1/3)); # Wesley Ivan Hurt, Nov 12 2015
  • Mathematica
    RealDigits[N[2^(1/3), 5!]] (* Vladimir Joseph Stephan Orlovsky, Sep 04 2008 *)
  • PARI
    default(realprecision, 20080); x=2^(1/3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002580.txt", n, " ", d));  \\ Harry J. Smith, May 07 2009
    
  • PARI
    default(realprecision, 100); x= 2^(1/3); for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", "))  \\ Altug Alkan, Nov 14 2015

Formula

(-2^(1/3) - 2^(1/3) * sqrt(-3))^3 = (-2^(1/3) + 2^(1/3) * sqrt(-3))^3 = 16. - Alonso del Arte, Jan 04 2015
Set c=2 in the identities c^(1/3) = sqrt(c/sqrt(c/sqrt(c/...))) = sqrt(sqrt(c*sqrt(sqrt(c*sqrt(sqrt(...)))))). - Stanislav Sykora, Nov 11 2015
Equals Product_{k>=0} (1 + (-1)^k/(3*k + 2)). - Amiram Eldar, Jul 25 2020
From Peter Bala, Mar 01 2022: (Start)
Equals Sum_{n >= 0} (1/(3*n+1) - 1/(3*n-2))*binomial(1/3,n) = (3/2)* hypergeom([-1/3, -2/3], [4/3], -1). Cf. A290570.
Equals 4/3 - 4*Sum_{n >= 1} binomial(1/3,2*n+1)/(6*n-1) = (4/3)*hypergeom ([1/2, -1/6], [3/2], 1).
Equals hypergeom([-2/3, -1/6], [1/2], 1).
Equals hypergeom([2/3, 1/6], [4/3], 1). (End)

A059539 Beatty sequence for 3^(1/3).

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 72, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 100
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059540.
Partial sums of A081129.
Cf. A002581.

Programs

  • Mathematica
    Floor[Range[100]*CubeRoot[3]] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=3^(1/3); for (n = 1, 2000, write("b059539.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 27 2009
    
  • Python
    from sympy import integer_nthroot
    def A059539(n): return integer_nthroot(3*n**3,3)[0] # Chai Wah Wu, Mar 16 2021

Formula

a(n) = floor(n*A002581). - R. J. Mathar, Apr 12 2019

A011446 Decimal expansion of 27th root of 27.

Original entry on oeis.org

1, 1, 2, 9, 8, 3, 0, 9, 6, 3, 9, 0, 9, 7, 5, 3, 0, 3, 2, 6, 1, 2, 1, 6, 6, 1, 0, 4, 2, 8, 2, 8, 4, 1, 8, 7, 4, 4, 8, 4, 0, 0, 3, 8, 9, 3, 8, 3, 6, 8, 4, 9, 6, 2, 9, 8, 9, 3, 1, 5, 1, 2, 0, 1, 5, 4, 1, 1, 0, 6, 0, 3, 3, 6, 8, 1, 2, 0, 0, 7, 9, 5, 4, 7, 2, 3, 7, 2, 0, 0, 0, 2, 6, 5, 8, 5, 7, 1, 2
Offset: 1

Views

Author

Keywords

Comments

Also decimal expansion of ninth root of 3. - Alonso del Arte, Jun 18 2014

Examples

			1.1298309639097530326121661042828418744840038938368496298931512015411...
		

Crossrefs

Cf. A002581.

Programs

A010769 Decimal expansion of 7th root of 2.

Original entry on oeis.org

1, 1, 0, 4, 0, 8, 9, 5, 1, 3, 6, 7, 3, 8, 1, 2, 3, 3, 7, 6, 4, 9, 5, 0, 5, 3, 8, 7, 6, 2, 3, 3, 4, 4, 7, 2, 1, 3, 2, 5, 3, 2, 6, 6, 0, 0, 7, 8, 0, 1, 2, 4, 1, 6, 5, 5, 1, 4, 5, 3, 2, 4, 6, 4, 1, 4, 2, 1, 0, 6, 3, 2, 2, 8, 8, 0, 3, 8, 0, 9, 8, 0, 7, 1, 6, 5, 9, 8, 2, 8, 9, 8, 8, 6, 3, 0, 2, 0, 0
Offset: 1

Views

Author

Keywords

Comments

This is also the unique positive attractor of the mapping M(x) = sqrt(sqrt(sqrt(2*x))). In general, (p^N-1)-th root of a number f can be approximated by iterating the mapping M(x) = (f*x)^(1/p^N). The convergence is very fast. In this case, p=2, N=3, and f=2. In the form "evaluate the 3rd (or 7th or 15th) root of a number using only square roots", the insight is usable as a recreational math puzzle. - Stanislav Sykora, Oct 26 2015

Examples

			1.104089513673812337649505387623...
		

Crossrefs

Cube roots (p=2,N=2) for various f: A002580 (2), A002581 (3), A005480 (4), A010582 (10), A092041 (e). 7th roots (p=2,N=3): A246709 (3), A011186 (4), A011201 (5), A011276 (10), A092516 (e). 8th roots (p=3,N=2): A010770 (2), A246710 (3), A011202 (5), A011277 (10). 15th roots (p=2,N=4): A010777(2), A011194(4), A011209(5), A011284(10). - Stanislav Sykora, Oct 26 2015

Programs

  • Mathematica
    RealDigits[N[2^(1/7), 100]][[1]] (* Vincenzo Librandi, Apr 02 2013 *)
    RealDigits[Surd[2,7],10,120][[1]] (* Harvey P. Dale, Sep 05 2022 *)
  • PARI
    sqrtn(2,7) \\ Charles R Greathouse IV, Apr 15 2014
    
  • PARI
    { default(realprecision, 100); x= 2^(1/7); for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Altug Alkan, Nov 14 2015

Formula

Equals Product_{k>=0} (1 + (-1)^k/(7*k + 6)). - Amiram Eldar, Jul 29 2020

A092975 Consider all partitions of n into parts all of which are divisors of n; a(n) = maximal product of parts.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 7, 16, 27, 32, 11, 81, 13, 128, 243, 256, 17, 729, 19, 1024, 2187, 2048, 23, 6561, 3125, 8192, 19683, 16384, 29, 59049, 31, 65536, 177147, 131072, 78125, 531441, 37, 524288, 1594323, 1048576, 41, 4782969, 43, 4194304, 14348907
Offset: 1

Views

Author

Amarnath Murthy, Mar 27 2004

Keywords

Comments

a(p) = p, a(p*q) = max(p^q, q^p). p,q are primes.
For n>1, maximum among the numbers p^(n/p), where p is a prime factor of n (for minimum, see A243405). Upper bound (for any n): a(n) <= (3^(1/3))^n = A002581^n. - Stanislav Sykora, Jun 04 2014

Examples

			a(12)= 81, the partition into divisors are (12), (6+6),(6+4+2),...(4+4+4), (4+3+3+2), ..., (3+3+3+3), (2+2+2+2+2+2) etc. as 3^4=81 > 4*3*3*2=72 > 2^6 =64.
		

Crossrefs

Programs

  • Mathematica
    Table[ Max[(n/Divisors[n])^Divisors[n]], {n, 1, 100}] (* Stefan Steinerberger, Apr 23 2006 *)
  • PARI
    A092975(n)={my(p);if(n==1,return(1));
      if(n%3==0,return(3^(n/3)));
      p = factor(n)[1,1];return (p^(n\p));}

Formula

a(n) = Max{(n/d)^d : d divides n }. - Vladeta Jovovic, Aug 06 2005
When n=3m then a(n)=3^m; otherwise, a(n)=q^(n/q), q being the smallest prime factor of n. - Stanislav Sykora, Jun 04 2014

Extensions

More terms from Vladeta Jovovic, Aug 06 2005

A002353 Denominators of convergents to cube root of 3.

Original entry on oeis.org

1, 2, 7, 9, 43, 52, 303, 355, 658, 4303, 9264, 50623, 414248, 1293367, 4294349, 18470763, 41235875, 265886013, 1104779927, 4685005721, 5789785648, 22054362665, 49898510978, 171749895599, 736898093374, 908647988973, 4371490049266, 40252058432367
Offset: 0

Views

Author

Keywords

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67.
  • P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002354 (numerators), A002581.

Programs

  • Mathematica
    Denominator[Convergents[3^(1/3), 40]] (* Vincenzo Librandi, Sep 09 2013 *)
  • PARI
    a(n)= contfracpnqn(contfrac(3^(1/3), n))[2, 1]; \\ Michel Marcus, Sep 08 2013

Extensions

More terms from Michel Marcus, Sep 08 2013
Offset changed by Andrew Howroyd, Jul 04 2024

A002354 Numerators of convergents to cube root of 3.

Original entry on oeis.org

1, 3, 10, 13, 62, 75, 437, 512, 949, 6206, 13361, 73011, 597449, 1865358, 6193523, 26639450, 59472423, 383473988, 1593368375, 6756947488, 8350315863, 31807895077, 71966106017, 247706213128, 1062790958529, 1310497171657, 6304779645157, 58053513978070
Offset: 0

Views

Author

Keywords

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67.
  • P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002353 (denominators), A002581.

Programs

  • Mathematica
    Numerator[Convergents[3^(1/3), 30]] (* Vincenzo Librandi, Sep 09 2013 *)
  • PARI
    a(n)= contfracpnqn(contfrac(3^(1/3), n))[1, 1];  \\ Michel Marcus, Sep 08 2013

Extensions

More terms from Herman P. Robinson
More terms from Michel Marcus, Sep 08 2013
Offset changed by Andrew Howroyd, Jul 04 2024
Showing 1-10 of 24 results. Next