cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A174817 Near primes to Mnr = A001228(26) = 808017424794512875886459904961710757005754368000000000, also called the Monster number, cf. A003131.

Original entry on oeis.org

808017424794512875886459904961710757005754367999999957, 808017424794512875886459904961710757005754367999999947, 808017424794512875886459904961710757005754368000000083, 808017424794512875886459904961710757005754367999999803, 808017424794512875886459904961710757005754368000000283
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 02 2010

Keywords

Comments

Sorted by increasing distance to Mnr = abs(A174818(n)).

Examples

			a(1) = Mnr - 43 = 808017424794512875886459904961710757005754367999999957 is the nearest prime to Mnr;
a(3) = Mnr + 83 = 808017424794512875886459904961710757005754368000000083 is the smallest prime greater than Mnr; remarkably, (a(143),a(141)) = (Mnr-9511,Mnr-9509) is a twin prime pair.
		

Crossrefs

Programs

  • Mathematica
    With[{mnr=808017424794512875886459904961710757005754368000000000},SortBy[ {#,Abs[ #-mnr]}&/@Table[NextPrime[mnr,n],{n,{-4,-3,-2,-1,1,2,3,4}}],Last]][[All,1]] (* Harvey P. Dale, Nov 14 2021 *)

Formula

a(n) = Mnr + A174818(n).

Extensions

a(5) aligned with b-file by Georg Fischer, Jul 11 2022

A174818 a(n) = A174817(n) - Mnr; where Mnr = A001228(26) = 808017424794512875886459904961710757005754368000000000, also called the Monster number, cf. A003131.

Original entry on oeis.org

-43, -53, 83, -197, 283, -313, 431, -433, -439, -673, -733, 823, 881, 997, 1061, -1093, -1123, 1223, 1303, 1307, 1327, 1381, -1451, 1453, -1471, -1531, 1549, 1583, -1607, -1667, 1709, 1721, -1787, 1787, 1949, -1973, 1993, 2039, 2083, -2099, 2129
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 02 2010

Keywords

Comments

The absolute values of the terms are non-divisors of Mnr (complement of A174670); the smallest composite term is ABS(a(43))=2479=37*67.

Crossrefs

A121236 Primes of the form A001228(n) + 1 and A001228(n) - 1 where A001228 = orders of sporadic simple groups.

Original entry on oeis.org

7919, 604801, 10200959, 44351999, 44352001, 50232961, 244823041, 460815505919, 64561751654399, 4089470473293004801, 4157776806543360001, 86775571046077562879
Offset: 1

Views

Author

Jonathan Vos Post, Aug 21 2006

Keywords

Comments

This is not an arbitrary thing to do, as in some cases the sporadic group has an order depending on a specific power, as with A001228(1) + 1 = 7921 = 89^2 and A001228(3) + 1 = 175561 = 419^2. The largest integer to check is 1 + the order of the monster group, which is the semiprime 808017424794512875886459904961710757005754368000000001 = 18250906752127213 * 44272727693397225537389001926419074277.

Examples

			a(1) = 7919 = A001228(1) - 1.
a(2) = 604801 = A001228(5) + 1.
a(3) = 10200959 = A001228(6) - 1.
a(4) = 44351999 = A001228(7) - 1.
a(5) = 44352001 = A001228(7) + 1.
a(6) = 50232961 = A001228(8) + 1.
a(7) = 244823041 = A001228(9) + 1.
a(8) = 460815505919 = A001228(14) + 1.
a(9) = 64561751654399 = A001228(17) - 1.
a(10) = 4089470473293004801 = A001228(21) + 1.
a(11) = 4157776806543360001 = A001228(22) + 1.
a(12) = 86775571046077562879 = A001228(23) - 1.
		

Crossrefs

Formula

({A001228(n) + 1} UNION {A001228(n) - 1}) INTERSECTION A000040.

A000001 Number of groups of order n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2, 5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 13, 1, 2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 50, 1, 2, 3, 4, 1, 6, 1, 52, 15, 2, 1, 15, 1, 2, 1, 12, 1, 10, 1, 4, 2
Offset: 0

Views

Author

Keywords

Comments

Also, number of nonisomorphic subgroups of order n in symmetric group S_n. - Lekraj Beedassy, Dec 16 2004
Also, number of nonisomorphic primitives (antiderivatives) of the combinatorial species Lin[n-1], or X^{n-1}; see Rajan, Summary item (i). - Nicolae Boicu, Apr 29 2011
In (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), a(n) is called the "group number of n", denoted by gnu(n), and the first occurrence of k is called the "minimal order attaining k", denoted by moa(k) (see A046057). - Daniel Forgues, Feb 15 2017
It is conjectured in (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008) that the sequence n -> a(n) -> a(a(n)) = a^2(n) -> a(a(a(n))) = a^3(n) -> ... -> consists ultimately of 1s, where a(n), denoted by gnu(n), is called the "group number of n". - Muniru A Asiru, Nov 19 2017
MacHale (2020) shows that there are infinitely many values of n for which there are more groups than rings of that order (cf. A027623). He gives n = 36355 as an example. It would be nice to have enough values of n to create an OEIS entry for them. - N. J. A. Sloane, Jan 02 2021
I conjecture that a(i) * a(j) <= a(i*j) for all nonnegative integers i and j. - Jorge R. F. F. Lopes, Apr 21 2024

Examples

			Groups of orders 1 through 10 (C_n = cyclic, D_n = dihedral of order n, Q_8 = quaternion, S_n = symmetric):
1: C_1
2: C_2
3: C_3
4: C_4, C_2 X C_2
5: C_5
6: C_6, S_3=D_6
7: C_7
8: C_8, C_4 X C_2, C_2 X C_2 X C_2, D_8, Q_8
9: C_9, C_3 X C_3
10: C_10, D_10
		

References

  • S. R. Blackburn, P. M. Neumann, and G. Venkataraman, Enumeration of Finite Groups, Cambridge, 2007.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 302, #35.
  • J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 209.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 134.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 150.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley Publ. Co., Reading, MA, 1989, Section 6.6 'Fibonacci Numbers' pp. 281-283.
  • M. Hall, Jr. and J. K. Senior, The Groups of Order 2^n (n <= 6). Macmillan, NY, 1964.
  • D. Joyner, 'Adventures in Group Theory', Johns Hopkins Press. Pp. 169-172 has table of groups of orders < 26.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.24, p. 481.
  • M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128. Group theory (Singapore, 1987), 437-442, de Gruyter, Berlin-New York, 1989.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The main sequences concerned with group theory are A000001 (this one), A000679, A001034, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A000688, A060689, A051532.
A003277 gives n for which A000001(n) = 1, A063756 (partial sums).
A046057 gives first occurrence of each k.
A027623 gives the number of rings of order n.

Programs

  • GAP
    A000001 := Concatenation([0], List([1..500], n -> NumberSmallGroups(n))); # Muniru A Asiru, Oct 15 2017
  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n) : n in [1..1000] ]; // John Cannon, Dec 23 2006
    
  • Maple
    GroupTheory:-NumGroups(n); # with(GroupTheory); loads this command - N. J. A. Sloane, Dec 28 2017
  • Mathematica
    FiniteGroupCount[Range[100]] (* Harvey P. Dale, Jan 29 2013 *)
    a[ n_] := If[ n < 1, 0, FiniteGroupCount @ n]; (* Michael Somos, May 28 2014 *)

Formula

From Mitch Harris, Oct 25 2006: (Start)
For p, q, r primes:
a(p) = 1, a(p^2) = 2, a(p^3) = 5, a(p^4) = 14, if p = 2, otherwise 15.
a(p^5) = 61 + 2*p + 2*gcd(p-1,3) + gcd(p-1,4), p >= 5, a(2^5)=51, a(3^5)=67.
a(p^e) ~ p^((2/27)e^3 + O(e^(8/3))).
a(p*q) = 1 if gcd(p,q-1) = 1, 2 if gcd(p,q-1) = p. (p < q)
a(p*q^2) is one of the following:
---------------------------------------------------------------------------
| a(p*q^2) | p*q^2 of the form | Sequences (p*q^2) |
---------- ------------------------------------------ ---------------------
| (p+9)/2 | q == 1 (mod p), p odd | A350638 |
| 5 | p=3, q=2 => p*q^2 = 12 |Special case with A_4|
| 5 | p=2, q odd | A143928 |
| 5 | p == 1 (mod q^2) | A350115 |
| 4 | p == 1 (mod q), p > 3, p !== 1 (mod q^2) | A349495 |
| 3 | q == -1 (mod p), p and q odd | A350245 |
| 2 | q !== +-1 (mod p) and p !== 1 (mod q) | A350422 |
---------------------------------------------------------------------------
[Table from Bernard Schott, Jan 18 2022]
a(p*q*r) (p < q < r) is one of the following:
q == 1 (mod p) r == 1 (mod p) r == 1 (mod q) a(p*q*r)
-------------- -------------- -------------- --------
No No No 1
No No Yes 2
No Yes No 2
No Yes Yes 4
Yes No No 2
Yes No Yes 3
Yes Yes No p+2
Yes Yes Yes p+4
[table from Derek Holt].
(End)
a(n) = A000688(n) + A060689(n). - R. J. Mathar, Mar 14 2015

Extensions

More terms from Michael Somos
Typo in b-file description fixed by David Applegate, Sep 05 2009

A005180 Orders of simple groups.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 60, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 168, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Keywords

Comments

Officially the group of order 1 is not considered to be simple - see for example Rotman, Group Theory.

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • M. Hall, Jr., A search for simple groups of order less than one million, pp. 137-168 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000001, A001228. Union of {1}, A000040 and A001034.

Programs

  • Mathematica
    (* Recomputation from A001034. *)
    maxOrder = 7789;
    A001034 = Select[Cases[Import["https://oeis.org/A001034/b001034.txt", "Table"], {, }][[All, 2]], # <= maxOrder&];
    Union[{1}, Prime[Range[PrimePi[maxOrder]]], A001034] (* Jean-François Alcover, Aug 19 2019 *)

A001034 Orders of noncyclic simple groups (without repetition).

Original entry on oeis.org

60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828, 12180, 14880, 20160, 25308, 25920, 29120, 32736, 34440, 39732, 51888, 58800, 62400, 74412, 95040, 102660, 113460, 126000, 150348, 175560, 178920
Offset: 1

Views

Author

Keywords

Comments

An alternative definition, to assist in searching: Orders of non-cyclic finite simple groups.
This comment is about the three sequences A001034, A060793, A056866: The Feit-Thompson theorem says that a finite group with odd order is solvable, hence all numbers in this sequence are even. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 08 2001 [Corrected by Isaac Saffold, Aug 09 2021]
The primitive elements are A257146. These are also the primitive elements of A056866. - Charles R Greathouse IV, Jan 19 2017
Conjecture: This is a subsequence of A083207 (Zumkeller numbers). Verified for n <= 156. A fast provisional test was used, based on Proposition 17 from Rao/Peng JNT paper (see A083207). For those few cases where the fast test failed (such as 2588772 and 11332452) the comprehensive (but much slower) test by T. D. Noe at A083207 was used for result confirmation. - Ivan N. Ianakiev, Jan 11 2020
From M. Farrokhi D. G., Aug 11 2020: (Start)
The conjecture is not true. The smallest and the only counterexample among the first 457 terms of the sequence is a(175) = 138297600.
On the other hand, the orders of sporadic simple groups are Zumkeller. And with the exception of the smallest two orders 7920 and 95040, the odd part of the other orders are also Zumkeller. (End)
Every term in this sequence is divisible by 4*p*q, where p and q are distinct odd primes. - Isaac Saffold, Oct 24 2021

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • Dickson L.E. Linear groups, with an exposition of the Galois field theory (Teubner, 1901), p. 309.
  • M. Hall, Jr., A search for simple groups of order less than one million, pp. 137-168 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A109379 (orders with repetition), A119648 (orders that are repeated).

A174670 Divisors of the order of the Monster group.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 75, 76, 77, 78, 80
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 02 2010

Keywords

Comments

Let Mnr = A001228(26) = 808017424794512875886459904961710757005754368000000000, also called the Monster number, cf. A003131;
the sequence is finite with A174601(26) = 424488960 terms;
a(n) = n for n < 37 = A053669(Mnr) = (smallest prime not in A002267);
24 of the 26 terms of A001228 are divisors of Mnr, the exceptions are A001228(19) and A001228(23), orders of groups Ly and J4;
also the first 36 factorials and the first 11 primorials are divisors of Mnr (cf. examples);
A174671 gives divisors of Mnr sorted into decreasing order: A174671(n)=a(424488960-n+1)=Mnr/a(n).

Examples

			......... a(30) = A002110(3) = ........... 30 = 5#;
........ a(101) = A000142(5) = .......... 120 = 5!;
........ a(159) = A002110(4) = .......... 210 = 7#;
........ a(398) = A000142(6) = .......... 720 = 6!;
........ a(888) = A002110(5) = ......... 2310 = 11#;
....... a(1461) = A000142(7) = ......... 5040 = 7!;
....... a(1931) = A001228(1) = ......... 7920;
....... a(4207) = A002110(6) = ........ 30030 = 13#;
....... a(4952) = A000142(8) = ........ 40320 = 8!;
....... a(7859) = A001228(2) = ........ 95040;
...... a(10787) = A001228(3) = ....... 175560;
...... a(15477) = A000142(9) = ....... 362880 = 9!;
...... a(17056) = A001228(4) = ....... 443520;
...... a(18257) = A002110(7) = ....... 510510 = 17#;
...... a(19792) = A001228(5) = ....... 604800;
...... a(44571) = A000142(10) = ..... 3628800 = 10!;
...... a(67510) = A002110(8) = ...... 9699690 = 19#;
...... a(68918) = A001228(6) = ..... 10200960;
..... a(118553) = A000142(11) = .... 39916800 = 11!;
..... a(123436) = A001228(7) = ..... 44352000;
..... a(129447) = A001228(8) = ..... 50232960;
..... a(223787) = A002110(9) = .... 223092870 = 23#;
..... a(231256) = A001228(9) = .... 244823040;
..... a(291999) = A000142(12) = ... 479001600 = 12!.
..... a(360936) = A001228(10) = ... 898128000;
..... a(584543) = A001228(11) = .. 4030387200;
.. a(424488960) = A001228(26) = ......... Mnr, the last term.
		

Programs

  • PARI
    divisors(808017424794512875886459904961710757005754368000000000)
    \\ Warning: output is ~13 GB.
    \\ Charles R Greathouse IV, Sep 02 2015

A003131 Order of Monster simple group.

Original entry on oeis.org

8, 0, 8, 0, 1, 7, 4, 2, 4, 7, 9, 4, 5, 1, 2, 8, 7, 5, 8, 8, 6, 4, 5, 9, 9, 0, 4, 9, 6, 1, 7, 1, 0, 7, 5, 7, 0, 0, 5, 7, 5, 4, 3, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 54

Views

Author

Keywords

Examples

			808017424794512875886459904961710757005754368000000000.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. 228.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 296.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996, p. 62.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 474.

Crossrefs

Programs

  • PARI
    2^46 * 3^20 * 5^9 * 7^6 * 11^2 * 13^3 * 17 * 19 * 23 * 29 * 31 * 41 * 47 * 59 * 71 \\ Charles R Greathouse IV, Oct 31 2014

Formula

Equals A001228(26) = Product_{n=1..15} A002267(n)^A051161(A049084(A002267(n))) = Sum_{n=0..53} a(53-n)*10^n = h(53) with h(n) = 10*h(n-1) + a(n) for n > 0, h(0) = a(0). - Reinhard Zumkeller, Apr 02 2010

A109379 Orders of non-cyclic simple groups (with repetition).

Original entry on oeis.org

60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828, 12180, 14880, 20160, 20160, 25308, 25920, 29120, 32736, 34440, 39732, 51888, 58800, 62400, 74412, 95040, 102660, 113460, 126000, 150348
Offset: 1

Views

Author

N. J. A. Sloane, Jul 29 2006

Keywords

Comments

The first repetition is at 20160 (= 8!/2) and the first proof that there exist two nonisomorphic simple groups of this order was given by the American mathematician Ida May Schottenfels (1869-1942). - David Callan, Nov 21 2006
By the Feit-Thompson theorem, all terms in this sequence are even. - Robin Jones, Dec 25 2023

References

  • See A001034 for references and other links.

Crossrefs

Cf. A001034 (orders without repetition), A119648 (orders that are repeated).

A174601 Numbers of divisors of orders of sporadic simple groups.

Original entry on oeis.org

60, 112, 128, 192, 192, 384, 480, 384, 704, 896, 1056, 1920, 2688, 3200, 2816, 4256, 4320, 5880, 16128, 16896, 25536, 26400, 45056, 143616, 1580544, 424488960
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 02 2010

Keywords

Comments

a(n) = A000005(A001228(n)).

Examples

			a(1) = A000005(7920) = A000005(2^4 * 3^2 * 5^1 * 11^1) = (4+1)*(2+1)*(1+1)*(1+1) = 60;
a(26) = PROD((A051161(k)+1): k>0) = (46+1)*(20+1)*(9+1)*(6+1)*(2+1)*(3+1)*(1+1)*(1+1)*(1+1)*(1+1)*(1+1)*(0+1)*(1+1)*(0+1)*(1+1)*(0+1)*(1+1)*(0+1)*(0+1)*(1+1)*(0+1)*(0+1)*... = 47*21*10*7*3*4*2*2*2*2*2*1*2*1*2*1*2*1*1*2*1*1*... = 424488960.
		

Crossrefs

Cf. A174670.
Showing 1-10 of 24 results. Next