cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174818 a(n) = A174817(n) - Mnr; where Mnr = A001228(26) = 808017424794512875886459904961710757005754368000000000, also called the Monster number, cf. A003131.

Original entry on oeis.org

-43, -53, 83, -197, 283, -313, 431, -433, -439, -673, -733, 823, 881, 997, 1061, -1093, -1123, 1223, 1303, 1307, 1327, 1381, -1451, 1453, -1471, -1531, 1549, 1583, -1607, -1667, 1709, 1721, -1787, 1787, 1949, -1973, 1993, 2039, 2083, -2099, 2129
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 02 2010

Keywords

Comments

The absolute values of the terms are non-divisors of Mnr (complement of A174670); the smallest composite term is ABS(a(43))=2479=37*67.

Crossrefs

A003131 Order of Monster simple group.

Original entry on oeis.org

8, 0, 8, 0, 1, 7, 4, 2, 4, 7, 9, 4, 5, 1, 2, 8, 7, 5, 8, 8, 6, 4, 5, 9, 9, 0, 4, 9, 6, 1, 7, 1, 0, 7, 5, 7, 0, 0, 5, 7, 5, 4, 3, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 54

Views

Author

Keywords

Examples

			808017424794512875886459904961710757005754368000000000.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. 228.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 296.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996, p. 62.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 474.

Crossrefs

Programs

  • PARI
    2^46 * 3^20 * 5^9 * 7^6 * 11^2 * 13^3 * 17 * 19 * 23 * 29 * 31 * 41 * 47 * 59 * 71 \\ Charles R Greathouse IV, Oct 31 2014

Formula

Equals A001228(26) = Product_{n=1..15} A002267(n)^A051161(A049084(A002267(n))) = Sum_{n=0..53} a(53-n)*10^n = h(53) with h(n) = 10*h(n-1) + a(n) for n > 0, h(0) = a(0). - Reinhard Zumkeller, Apr 02 2010
Showing 1-2 of 2 results.