A056901 Least semiperimeter s of primitive Pythagorean triangle with inradius n.
6, 15, 20, 45, 42, 35, 72, 153, 110, 63, 156, 77, 210, 99, 88, 561, 342, 143, 420, 117, 130, 195, 600, 209, 702, 255, 812, 165, 930, 187, 1056, 2145, 238, 399, 204, 221, 1482, 483, 304, 273, 1806, 247, 1980, 285, 266, 675, 2352, 665, 2550, 783, 460, 357
Offset: 1
Keywords
References
- Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.
- Albert H. Beiler, "Recreations In The Theory Of Numbers, The Queen Of Mathematics Entertains," Dover Publications, Inc., Second Edition, NY, 1966, Chapter XIV, 'The Eternal Triangle,' pages 104 - 134.
Links
- Eric Weisstein's World of Mathematics, Semiperimeter
- Wm. H. Richardson, The inradius of a Right Triangle with Integral Sides
Crossrefs
Cf. A014498.
Programs
-
Mathematica
a = Table[10^9, {75} ]; Do[ If[ GCD[m, n] == 1 && Sort[ Mod[ {m, n}, 2]] == {0, 1}, s = m^2 + m*n; r = n(m - n); If[r < 76 && a[[r]] > s, a[[r]] = s; Print[r, " ", s]]], {m, 2, 10^2}, {n, 1, m - 1} ]
Formula
When n is (i) an odd prime power, s = (n + 1)(n + 2). (ii) a power of 2, s = (n + 1)(2n + 1). (iii) a composite with relatively prime factors a*b such that a is smallest, s = (a + b)(2a + b).
Extensions
Edited and extended by Robert G. Wilson v, Feb 18 2002
Comments