cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056901 Least semiperimeter s of primitive Pythagorean triangle with inradius n.

Original entry on oeis.org

6, 15, 20, 45, 42, 35, 72, 153, 110, 63, 156, 77, 210, 99, 88, 561, 342, 143, 420, 117, 130, 195, 600, 209, 702, 255, 812, 165, 930, 187, 1056, 2145, 238, 399, 204, 221, 1482, 483, 304, 273, 1806, 247, 1980, 285, 266, 675, 2352, 665, 2550, 783, 460, 357
Offset: 1

Views

Author

Lekraj Beedassy, Feb 12 2002

Keywords

Comments

For a primitive Pythagorean triangle with sides X, Y & Z, we have two generating numbers m&n such that m>n, gcd(m,n) = 1 and the parity of m&n are opposite. X = m^2 - n^2, Y = 2mn and Z = m^2 + n^2, s = m^2 + mn and finally r = n(m-n).
Moreover, a primitive Pythagorean triangle has area n*a(n).

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.
  • Albert H. Beiler, "Recreations In The Theory Of Numbers, The Queen Of Mathematics Entertains," Dover Publications, Inc., Second Edition, NY, 1966, Chapter XIV, 'The Eternal Triangle,' pages 104 - 134.

Crossrefs

Cf. A014498.

Programs

  • Mathematica
    a = Table[10^9, {75} ]; Do[ If[ GCD[m, n] == 1 && Sort[ Mod[ {m, n}, 2]] == {0, 1}, s = m^2 + m*n; r = n(m - n); If[r < 76 && a[[r]] > s, a[[r]] = s; Print[r, " ", s]]], {m, 2, 10^2}, {n, 1, m - 1} ]

Formula

When n is (i) an odd prime power, s = (n + 1)(n + 2). (ii) a power of 2, s = (n + 1)(2n + 1). (iii) a composite with relatively prime factors a*b such that a is smallest, s = (a + b)(2a + b).

Extensions

Edited and extended by Robert G. Wilson v, Feb 18 2002