cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056947 Theta series of nonexistent Niemeier lattice of Coxeter number 1.

Original entry on oeis.org

1, 24, 195984, 16779168, 397998672, 4629497040, 34417510848, 187489533504, 814881802320, 2975548760568, 9486548517600, 27052958750688, 70486228096704, 169931081461008, 384163595996544, 820166650027200, 1668890114013264, 3249630946490544, 6096882726702288
Offset: 0

Views

Author

Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jul 17 2000

Keywords

Examples

			G.f.: 1 + 24*q + 195984*q^2 + 16779168*q^3 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1988.

Crossrefs

Programs

  • Sage
    d = CuspForms(1, 12).0.q_expansion(20);
    e =(eisenstein_series_qexp(12,20, normalization='integral'))
    list(e/691-(48936/691)*d) # Andy Huchala, Jul 10 2021

Formula

E_12(z)+(24h-c12)*D(12) where D(12) is unique cusp form of weight 12, c12=(2*Pi)^12/(zeta(12)*gamma(12)) and h=1.
a(n) = (A029828(n) - 48936*A000594(n))/691. - Andy Huchala, Jul 11 2021